Blue Light Controlled Supramolecular Soft Robotics of Phenylazothiazole Amphiphiles for Rapid Macroscopic Actuations.

Adv Sci (Weinh)

State Key Laboratory of Chemical Biology and Drug Discover, Research Institute for Future Food, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.

Published: December 2024

Nature preprograms sophisticated processes in operating molecular machines at the nanoscale, amplifying the molecular motion across multiple length-scales, and controlling movements in living organisms. Supramolecular soft robotics serve as a new alternative to hard robotics, are able to transform and amplify collective motions of the supramolecularly assembled molecular machines in attaining macroscopic motions, upon photoirradiation. By taking advantage of oriented supramolecular macroscopic soft scaffold, here the first rapid macroscopic movements of supramolecular robotic materials driven by visible light are presented. Head-tail amphiphilic structure is designed with the phenylazothiazole motif as the photoswitching core. Unidirectionally aligned nanostructures of the amphiphilic phenylazothiazoles are controlled by non-invasive blue light irradiation and bends toward the light source, demonstrating a fast macroscopic actuation of supramolecular robotic systems (up to 17° s) in aqueous media. Through meticulous X-ray diffraction and electron microscopy analyzes, macroscopic actuation mechanism is illustrated in a tight relation to molecular geometric transformations upon photoisomerization. By elucidating the key macroscopic actuation parameters, this paves the way for the next generation design of supramolecular soft robotic systems with enhanced biomimetic actuating functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615827PMC
http://dx.doi.org/10.1002/advs.202407130DOI Listing

Publication Analysis

Top Keywords

supramolecular soft
12
macroscopic actuation
12
blue light
8
soft robotics
8
rapid macroscopic
8
molecular machines
8
supramolecular robotic
8
robotic systems
8
macroscopic
7
supramolecular
6

Similar Publications

Hydrogels based on supramolecular assemblies offer attractive features for biomedical applications including injectability or versatile combinations of various building blocks. We here investigate a system combining benzenetrispeptides (BTP), which forms supramolecular fibers, with polymer polyethylene oxide (PEO) forming a dense hydrophilic shell around the fibers. Hydrogels are created through the addition of a bifunctional crosslinker (CL).

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control.

ACS Appl Mater Interfaces

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

Hydrogen-bonded multi-mode liquid crystal elastomer actuators.

J Mater Chem B

January 2025

Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, P.O. Box 541, FI-33101, Finland.

As biomimicry advances, liquid crystal elastomers (LCEs) are gaining attention for their (multi-)stimuli-responsiveness and reversible shape morphing. Introduction of dynamic bonds into the LCEs provides versatile means towards programmable shape morphing and adaptation to environmental cues, and new designs for dynamic LCEs are actively sought for. Here, we present a supramolecular LCE that integrates shape memory programming, humidity sensitivity, and photochemical actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!