Introduction: Lenacapavir is the first HIV-1 capsid inhibitor administered subcutaneously twice yearly. While lenacapavir is currently only indicated as salvage therapy, it has the potential to become a foundation of future treatments and to revolutionize HIV prevention.
Areas Covered: This review summarizes the pharmacology of lenacapavir with particular emphasis placed on its drug-drug interaction (DDI) potential as it is used in treatment-experienced individuals who often present multiple comorbidities and polypharmacy. The effect of lenacapavir on drug metabolizing enzymes and transporters as well as findings of DDI studies are summarized. These data were used to predict DDIs with 1073 comedications. Finally, the management of selected DDIs is discussed. Conferences/workshops abstracts (i.e. CROI, IAS, EACS, HIV Glasgow, PK workshop) were screened using the terms: 'lenacapavir,' 'capsid inhibitor,' 'GS-6207,' and a PubMed search was used to compile data until September 2024.
Expert Opinion: Lenacapavir has a favorable DDI profile with 80% of evaluated comedications estimated to have no clinically significant DDIs. More studies are needed to address pharmacological gaps including the pharmacokinetics of lenacapavir in special populations, its transfer across the blood-brain barrier or the placenta as well as the possibility to manage DDIs with moderate/strong inducers by reducing lenacapavir dosing interval.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17425255.2024.2415295 | DOI Listing |
HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Viroscience Department, Erasmus MC, Rotterdam, The Netherlands.
Background: The treatment management of human immunodeficiency virus (HIV)-2 infection presents greater challenges compared to HIV-1 infection, primarily because of inherent resistance against non-nucleoside reverse transcriptase inhibitors. Integrase strand transfer inhibitors, particularly dolutegravir, have improved treatment outcomes for people with HIV-2. Lenacapavir, a novel and potent antiretroviral capsid inhibitor, offers additional therapeutic options.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.
View Article and Find Full Text PDFClin Infect Dis
December 2024
Université Paris Cité, Inserm, IAME, F-75018, Paris, France.
Lenacapavir is the first capsid inhibitor, its use is currently approved for multidrug resistant HIV-1 infection. We report that, despite an initial efficacy of a LEN-containing regimen in patients with multi-drug resistant HIV-2 viruses, virological suppression was not achieved after a year and most patients selected capsid drug-resistance associated mutations.
View Article and Find Full Text PDFVaccine
December 2024
Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:
The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!