Summary: Unsupervised deconvolution algorithms are often used to estimate cell composition from bulk tissue samples. However, applying cell-type deconvolution and interpreting the results remain a challenge, even more without prior training in bioinformatics. Here, we propose a tool for estimating and identifying cell type composition from bulk transcriptomes or methylomes. DECOMICS is a shiny-web application dedicated to unsupervised deconvolution approaches of bulk omic data. It provides (i) a variety of existing algorithms to perform deconvolution on the gene expression or methylation-level matrix, (ii) an enrichment analysis module to aid biological interpretation of the deconvolved components, based on enrichment analysis, and (iii) some visualization tools. Input data can be downloaded in csv format and preprocessed in the web application (normalization, transformation, and feature selection). The results of the deconvolution, enrichment, and visualization processes can be downloaded.

Availability And Implementation: DECOMICS is an R-shiny web application that can be launched (i) directly from a local R session using the R package available here: https://gitlab.in2p3.fr/Magali.Richard/decomics (either by installing it locally or via a virtual machine and a Docker image that we provide); or (ii) in the Biosphere-IFB Clouds Federation for Life Science, a multi-cloud environment scalable for high-performance computing: https://biosphere.france-bioinformatique.fr/catalogue/appliance/193/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479579PMC
http://dx.doi.org/10.1093/bioadv/vbae136DOI Listing

Publication Analysis

Top Keywords

cell type
8
biological interpretation
8
bulk omic
8
omic data
8
unsupervised deconvolution
8
composition bulk
8
enrichment analysis
8
web application
8
deconvolution
6
decomics shiny
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!