Qualitative and quantitative detection of biologically important molecules such as dopamine, thyroxine, hydrogen peroxide, and glucose, using newer and cheaper technology is of paramount importance in biology and medicine. Anion exchange in lead halide perovskites, on account of its good emission yield, facilitates the sensing of these molecules by the naked eye using ultraviolet light. Simple chemistry is used to generate chloride ions from analyte molecules. Dopamine and thyroxine have an amine functional group, which forms an adduct with an equivalent amount of volatile hydrochloric acid to yield chloride ions in solution. The reducing nature of hydrogen peroxide and glucose is used to generate chloride ions through a reaction with sodium hypochlorite in stoichiometric amounts. The emission of CsPbBr-coated paper/glass substrates shifts to the blue region in the presence of chloride ions. This helps in the detection of the above biologically important molecules up to parts per million (ppm) levels by employing fundamental chemistry aspects and well-known anion exchange in perovskite nanocrystals. The preparation of better and more efficient sensors, which are predominantly important in science and technology, can thus be achieved by developing the above novel, cost-effective alternative sensing method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475663 | PMC |
http://dx.doi.org/10.1039/d4ra06576j | DOI Listing |
Molecules
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania.
The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of MgAl layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Aleja Armii Krajowej 19, 42-200 Czestochowa, Poland.
This paper describes the methodology of the preparation and analyses of the structure and anticorrosion properties of silane coatings modified with poly(3,4-ethylenedioxythiophene) (PEDOT) with phosphododecamolybdic acid (PMo). Protective coatings, consisting of vinyltrimethoxysilane (VTMS), PEDOT powder with PMo admixture (at different concentrations), and ethanol, were deposited on X20Cr13 and 41Cr4 steels by immersion. The physicochemical properties of these silane coatings (e.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil.
The nanosecond pulsed fibre laser (NsPFL) treatment is extensively employed to distinguish hospital surgical instruments (micro-surgical forceps, surgical blades, orthopaedic drills, and high-precision laparoscopic tools), which are generally composed of stainless steel. Nevertheless, if the laser parameters are not properly optimised, this process may unintentionally provoke corrosion. Maintaining the structural integrity of these materials is essential for ensuring patient safety and minimising long-term costs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia.
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Flexible wearable sensors have obtained tremendous interest in various fields and conductive hydrogels are a promising candidate. Nevertheless, the insufficient mechanical properties, the low electrical conductivity and sensitivity, and the limited functional properties prevent the development of hydrogels as wearable sensors. In this study, an SFMA/BAChol/PAA/ZnCl hydrogel was fabricated with high mechanical strength and versatile comprehensive properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!