AI Article Synopsis

  • Aerobic glycolysis significantly contributes to tumor progression in colorectal cancer (CRC), with the gene SPAG4 being identified as a key player linked to poor patient outcomes.
  • The study examined how manipulating SPAG4 levels in CRC cells affected their growth, migration, and metabolic processes, revealing that silencing SPAG4 decreased and overexpressing it increased malignant behaviors.
  • The results showed SPAG4 activates the PI3K/Akt signaling pathway, enhancing glycolysis and mitochondrial function, suggesting that targeting SPAG4 could be a potential strategy for CRC treatment.

Article Abstract

Aerobic glycolysis plays a pivotal role in the progression of tumors. Previously, a glycolysis-associated prognostic model in CRC was constructed and the glycolysis-related gene SPAG4 was discovered to be upregulated in CRC and was correlated with adverse prognosis. To date, however, no study has elucidated the specific role of SPAG4 in the development of CRC. In our study, CRC cells were transfected with si-SPAG4 or OE-SPAG4 to evaluate the influence of SPAG4 silencing or overexpression on CRC cell malignant behaviors. CRC cell proliferation and metastasis were detected via CCK-8, colony formation, and Transwell assays. The oxygen consumption rate and extracellular acidification rate of CRC cells were determined by using an XF24 extracellular flux analyzer. The expression of SPAG4, key mitochondrial markers (NDUFA1, SDHB, ATP5A, and PGC-1α), key enzymes involved in glycolysis (GLUT1, HK2, LDHA, PKM2, and PFK1), and PI3K/Akt pathway-molecules and downstream transcription factor HIF-1α was assessed by RT-qPCR and western blot analysis. SPAG4 expression in CRC and normal tissue samples was tested through immunohistochemical staining. Finally, SPAG4-overexpressed CRC cells were treated with LY294002 to validate the inhibition of PI3K/Akt pathway on CRC cell malignant phenotypes. Our results showed that SPAG4 was upregulated in CRC cells and tissues, and high expression SPAG4 predicted shorter overall survival time. SPAG4 knockdown inhibited while SPAG4 overexpression enhanced CRC cell proliferation, migration, invasion, mitochondrial respiration, and aerobic glycolysis. Overexpressing SPAG4 elevated p-PI3K, p-Akt, p-mTOR, and HIF-1α protein levels, which were restored after LY294002 treatment. Furthermore, LY294002 abolished the promotion of SPAG4 overexpression on CRC malignant phenotypes. Collectively, SPAG4 plays an oncogenic role in CRC by promoting mitochondrial respiration and aerobic glycolysis through activating the PI3K/Akt signaling. These findings suggest that inhibition of SPAG4-mediated glucose metabolism may represent a potential strategy for the clinical treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.70009DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
16
crc cells
16
crc cell
16
crc
15
spag4
13
mitochondrial respiration
12
respiration aerobic
12
activating pi3k/akt
8
pi3k/akt signaling
8
upregulated crc
8

Similar Publications

ENO1 promotes PDAC progression by inhibiting CD8 T cell infiltration through upregulating PD-L1 expression via HIF-1α signaling.

Transl Oncol

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Metabolic reprogramming is a hallmark of cancer. The"Warburg effect", also known as aerobic glycolysis, is an essential part of metabolic reprogramming and a central contributor to cancer progression. Moreover, hypoxia is one of the significant features of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT.

Biochem Genet

January 2025

Department of Cardiac Function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.

Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Miami, Coral Gables, FL, USA.

Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.

View Article and Find Full Text PDF

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

We aimed to explore the role of circular RNA 0043256 (circ_0043256) in gastric cancer (GC) and its underlying mechanisms. The impact of circ_0043256 silencing on the proliferation, migration, apoptosis, and aerobic glycolysis of MKN-45 and AGS cells induced by CoCl2 was assessed through the utilization of CCK-8, wound healing assay, flow cytometry, and metabolic analysis. The interaction between circ_0043256 and miR-593-5p, as well as the involvement of the miR-593-5p/RRM2 axis in gastric cancer, were confirmed via luciferase assay, Western blot, and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!