With the rapid development of the automotive industry, the requirements for bodywork materials are not only focused on high strength but also on improved forming properties. To develop a new generation of automotive steels with higher strength-plasticity matching, a high elongation 1200 MPa grade V-Nb microalloyed cold-rolled reinforced formable dual-phase steel was developed in this experiment through rational compositional design and precise process machining. The properties of the test steel are improved by varying the over-aging temperature as well as the annealing temperature to achieve a good strength-plasticity balance. The results show that as the aging temperature increases, the tensile strength and yield strength of the test steel decrease, while the elongation continues to increase. At an aging temperature of 310 °C, the steel exhibits not only high strength but also better ductility. As the annealing temperature increases, the tensile strength and yield strength of the test steel initially increase and then decrease, while the elongation continues to increase. When the heat treatment process involves an annealing temperature of 860 °C and an over-aging temperature of 310 °C, the test steel achieves the best strength-plasticity balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477884 | PMC |
http://dx.doi.org/10.3390/ma17194933 | DOI Listing |
Nano Lett
January 2025
Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.
View Article and Find Full Text PDFFront Microbiol
January 2025
Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
The application of antimicrobial surfaces requires proof of their effectivity by methods in laboratories. One of the most common test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then conducted under defined humidity conditions for 24 h.
View Article and Find Full Text PDFInt Orthod
January 2025
Department of Orthodontics, Faculty of Dentistry, Al-Wataniya Private University, Hama, Syria.
Objectives: Apical root resorption and alveolar bone loss are potential complications associated with orthodontic treatment. This study aimed to assess apical root resorption and alveolar bone height following orthodontic treatment of moderate crowding with labial vs. lingual fixed appliances using CBCT imaging.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands.
Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Technologies of Machine Tools (ATMT) Lab, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
Electrochemical grinding (ECG) offers advantages such as burr-free and stress-free material removal. Despite its proven potential, limited research has addressed the comprehensive effects of key process parameters on the surface integrity of AISI 304 stainless steel, particularly for applications requiring high-quality finishes, such as medical components. This study bridges this gap by systematically investigating the influence of ECG key parameters including voltage, rotational speed, and electrolyte concentration on main surface integrity parameters including current density, surface roughness, microhardness, and surface texture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!