High-Temperature Fatigue Degradation Behaviors of a 3D Braided C/SiC with a Thin Interlayer in Different Dry Oxygen Atmospheres.

Materials (Basel)

Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Published: October 2024

AI Article Synopsis

  • The study investigates the flexural strength of a 3D braided C/SiC composite with a thin pyrolytic carbon interlayer under specific stress and temperature conditions.
  • Findings reveal that length change behaviors in the material are influenced by both the damage from the interlayer and the C phase, highlighting different types of damage depending on oxygen pressure and temperature.
  • At high oxygen pressure and temperature, the C phase experiences increased damage, which affects oxidation and microcrack formation within the material.

Article Abstract

In order to evaluate the increase in the flexural strength of a 3D braided C/SiC composite comprised with a thin pyrolytic carbon (PyC) interlayer (TI C/SiC) under a load of 60 MPa with an amplitude of ±20 MPa at an oxygen partial pressure of 8000 Pa, the effect of temperature, oxidation and stress value on the length change in the sample, fracture behavior, residual flexural strength and fracture morphology were studied up to 1500 °C. It was found that the gauge length change behaviors of the material are related to (i) the positive damage of the thin interlayer and (ii) to the negative damage of the C phase. The most serious damage of TI C/SiC under 60 ± 20 MPa occurs in an oxygen partial pressure of 17,000 Pa at 1300 °C. When the oxygen partial pressure and/or the temperature are reduced, the positive C phase damage is relieved. In the case that the oxygen partial pressure, temperature and stress increase, the negative C phase damage is facilitated. The oxidation mechanism of the C phase is controlled by the inward diffusion of oxygen from the sample surface to the center; however, a higher stress is considered to change the oxygen diffusion mechanism by increasing the reaction of the C phase, with oxygen causing a widening of microcracks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477804PMC
http://dx.doi.org/10.3390/ma17194925DOI Listing

Publication Analysis

Top Keywords

oxygen partial
16
partial pressure
16
braided c/sic
8
thin interlayer
8
oxygen
8
flexural strength
8
length change
8
phase damage
8
damage
5
phase
5

Similar Publications

The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.

View Article and Find Full Text PDF

Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.

View Article and Find Full Text PDF

Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants.

View Article and Find Full Text PDF

Dietary Compounds in the Prevention of Arsenic Induced Intestinal Toxicity .

J Med Food

January 2025

Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain.

Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.

View Article and Find Full Text PDF

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!