The growing importance of electromagnetic interference (EMI) shielding composites in civil engineering has garnered increasing attention. Conductive cement-based composites, incorporating various conductive fillers, such as carbon nanotubes (CNTs), carbon fibers (CFs), and graphene nanoplatelets (GNPs), provide effective solutions due to their high electrical conductivity. While previous studies have primarily focused on improving the overall shielding effectiveness, this research emphasizes balancing the reflection and absorption properties. The experimental results demonstrate an EMI shielding performance exceeding 50 dB, revealing that filler size (nano, micro, or macro) and shape (platelet or fiber) significantly influence both reflection and absorption characteristics. Based on a comprehensive evaluation of the shielding properties, this study highlights the need to consider factors such as reflection versus absorption losses and filler shape or type when optimizing filler content to develop effective cement-based EMI shielding composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478150PMC
http://dx.doi.org/10.3390/ma17194913DOI Listing

Publication Analysis

Top Keywords

emi shielding
16
reflection absorption
12
shielding composites
12
absorption properties
8
cement-based emi
8
shielding
6
influence conductive
4
filler
4
conductive filler
4
filler types
4

Similar Publications

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

Flexible, stretchable multifunctional silver nanoparticles-decorated cotton textile based on amyloid-like protein aggregation for electrothermal and photothermal dual-driven wearable heater.

Int J Biol Macromol

December 2024

State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.

View Article and Find Full Text PDF

A Review on MXene/Nanocellulose Composites: Toward Wearable Multifunctional Electromagnetic Interference Shielding Application.

Small

December 2024

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.

With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices.

View Article and Find Full Text PDF

Optical-electromagnetic compatible devices are urgently required in intelligent building monitors and cross-band protection. Meanwhile, the insufficient systematicness and semi-empirical attempts significantly limit the prosperity of cross-band materials, causing enormous challenges for deviceization and material database construction. Herein, the systematical component-deviceization-machine learning prediction-array construction strategy is attempted to solve the bottleneck issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!