Although the double-double (DD) laminates proposed by Tsai provide a promising option for achieving better structural performance with lower manufacturing and maintenance costs, the buckling performance of perforated DD laminates still remains clear. In this study, optimal ply angles, rotation angles, and the corresponding maximum buckling loads are determined for DD laminates with various cutouts, which are used for comparisons to evaluate the effects of cutout size and shape on the buckling behaviour of perforated DD laminates. Apart from conventional circular and elliptical cutouts, the use of a combined-shape cutout for DD laminates is also investigated. As a large number of optimisations are required to obtain the maximum buckling loads for different cases in this study, an efficient optimisation method for perforated DD laminates is proposed based on an artificial neural network (ANN) and a genetic algorithm (GA). Unlike conventional quadaxial (QUAD) laminates, the repetition of a four-ply sublaminate in DD laminates makes their layup to be represented by only two ply angles; hence, the application of ANN models for predicting the buckling behaviour of various perforated DD laminates is studied in this paper. The superior performance of the ANN models is demonstrated by comparisons with other machine learning models. Instead of using the time-consuming FEA, the developed ANN model is utilised within a GA to obtain the maximum buckling load of perforated DD laminates. Compared to the circular cutout, the use of elliptical and combined-shape cutouts leads to more noticeable changes in the optimal ply angles as the cutout size increases. Based on the obtained results, the use of the combined-shape cutout is recommended for DD laminates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477685 | PMC |
http://dx.doi.org/10.3390/ma17194677 | DOI Listing |
Microsurgery
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Thinning of anterolateral thigh flap is challenging. Anatomical studies have shown variations in arterial branching patterns in the subcutaneous layer, which were suspected to be the reason for the high frequency of thinning failures. We attempted to visualize subcutaneous arterial courses preoperatively and perform thinning of perforator flaps using this information appropriately.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
School of Civil Engineering, Southwest Forestry University, Kunming 650224, China.
The tensile properties of fiber metal laminates were examined at temperatures ranging from 30 °C to 180 °C in this paper through the integration of numerical simulation techniques, experimental measurements, and digital image correlation techniques. The laminates were initially modeled using finite elements, and the failure behavior of porous basalt-fiber-reinforced aluminum alloy plates was numerically simulated. Consequently, metal fiber laminate stress-strain responses were varied by numerous tensile experiments conducted at varying temperatures.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China.
Although the double-double (DD) laminates proposed by Tsai provide a promising option for achieving better structural performance with lower manufacturing and maintenance costs, the buckling performance of perforated DD laminates still remains clear. In this study, optimal ply angles, rotation angles, and the corresponding maximum buckling loads are determined for DD laminates with various cutouts, which are used for comparisons to evaluate the effects of cutout size and shape on the buckling behaviour of perforated DD laminates. Apart from conventional circular and elliptical cutouts, the use of a combined-shape cutout for DD laminates is also investigated.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK.
This research concerns the development and implementation of ground-breaking strategies for improving the sorting, separation, and recycling of common flexible laminate packaging materials. Such packaging laminates incorporate different functional materials in order to achieve the desired mechanical performance and barrier properties. Common components include poly(ethylene) (PE), poly(propylene) (PP), and poly(ethylene terephthalate) (PET), as well as valuable barrier materials such as poly(vinyl alcohol) (PVOH) and aluminium (Al) foils.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2024
Orthopaedic Biomechanics Lab, Victoria Hospital, London, Ontario, Canada.
Comminuted proximal humerus fractures are often repaired by metal plates, but potentially still experience bone refracture, bone "stress shielding," screw perforation, delayed healing, and so forth. This "proof of principle" investigation is the initial step towards the design of a new plate using alternative materials to address some of these problems. Finite element modeling was used to create design graphs for bone stress, plate stress, screw stress, and interfragmentary motion via three different fixations (no, 1, or 2 "kickstand" [KS] screws across the fracture) using a wide range of plate elastic moduli (E = 5-200 GPa).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!