Background/objectives: Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells.

Methods: NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476265PMC
http://dx.doi.org/10.3390/cancers16193272DOI Listing

Publication Analysis

Top Keywords

hla-class-i expression
32
cancer cells
12
hla-class-i
10
expression
10
autophagy blockage
8
cancer
8
lung cancer
8
immunotherapy efficacy
8
a549 h1299
8
chloroquine bafilomycin
8

Similar Publications

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

[Establishment and Application of Efficient Gene Editing Method for Classical HLA-I Molecules].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Institute of Transfusion Medicine, Blood Center of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China.

Objective: To establish an efficient gene editing method of HLA-I gene to prepare HLA-I universal hematopoietic stem cells.

Methods: The easyedit small guide RNA(sgRNA) was designed according to the sequences of β2 microglobulin gene and synthesized by GenScript company. RNP complexes were formed by NLS-Cas9-NLS nuclease and Easyedit sgRNA according to different molar ratios (1∶1~1∶4).

View Article and Find Full Text PDF

CapHLA: a comprehensive tool to predict peptide presentation and binding to HLA class I and class II.

Brief Bioinform

November 2024

Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.

Human leukocyte antigen class I (HLA-I) and class II (HLA-II) proteins play an essential role in epitope binding and presentation to initiate an immune response. Accurate prediction of peptide-HLA (pHLA) binding and presentation is critical for developing effective immunotherapies. However, current tools can predict antigens exclusively for pHLA-I or pHLA-II, but not both; have constraints on peptide length; and commonly show unsatisfactory predictive accuracy.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is usually acquired during infancy as an asymptomatic infection and persists throughout life in a latent state under the control of the host immune system. However, EBV is associated with various malignant diseases that preferentially develop in immunodeficient individuals. Accumulating evidence suggests an important role for NK cells, though the mechanisms by which EBV evades or triggers NK cell responses are poorly understood.

View Article and Find Full Text PDF

Background: PRAME (eferentially expressed ntigen in lanoma) is a cancer-testis antigen expressed in several tumor indications, representing an attractive anticancer target. However, its intracellular location limits targeting by traditional methods. PRAME peptides are presented on the surface of tumor cells by human leukocyte antigen (HLA) molecules, indicating that a T cell receptor (TCR)-based strategy that redirects T cells to kill PRAME tumors could be a novel immunotherapeutic option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!