In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced to feed on the marginal host walnut (). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes () may be crucial to adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478790 | PMC |
http://dx.doi.org/10.3390/plants13192761 | DOI Listing |
Vet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy.
Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia.
The accurate and reliable measurement of human movement stands as a cornerstone in the evaluation of athletic performance, the management of fall risk, the prevention of injury, and the guidance of clinical rehabilitation [...
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Information Science and Technology, Beijing University of Technology, Beijing 100124, China.
With the increasing complexity of urban roads and rising traffic flow, traffic safety has become a critical societal concern. Current research primarily addresses drivers' attention, reaction speed, and perceptual abilities, but comprehensive assessments of cognitive abilities in complex traffic environments are lacking. This study, grounded in cognitive science and neuropsychology, identifies and quantitatively evaluates ten cognitive components related to driving decision-making, execution, and psychological states by analyzing video footage of drivers' actions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!