Brassinazole-Resistant (BZR) is an important transcription factor (TF) in the brassinosteroid (BR) signaling pathway, which plays a crucial role in plant growth, development and stress resistance. In this study, we performed a genome-wide analysis of in garlic ( L.) and identified a total of 11 members of the gene family. By comparing the expression patterns of genes under salt stress, the candidate gene with salt tolerance function was identified. Subcellular localization results showed that was localized in the nucleus. The salt tolerance of overexpression lines improved, and the germination rate and root length of overexpression lines increased as compared with wild type. The content of reactive oxygen species (ROS) decreased, and the activity of antioxidant enzymes increased in -OE, suggesting that has the function of improving plant salt tolerance. Our results enriched the knowledge of plant family and laid a foundation for the molecular mechanism of salt tolerance of garlic, which will provide a theoretical basis for the subsequent creation of salt-tolerant germplasm resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478727PMC
http://dx.doi.org/10.3390/plants13192749DOI Listing

Publication Analysis

Top Keywords

salt tolerance
16
salt stress
8
overexpression lines
8
salt
6
identification family
4
family garlic
4
garlic verification
4
verification salt
4
stress brassinazole-resistant
4
brassinazole-resistant bzr
4

Similar Publications

Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.

View Article and Find Full Text PDF

Introduction: Little is known about the similarities and differences in responses of plants grown from heteromorphic seeds, which are morpho-physiologically dissimilar seeds produced simultaneously on the same plant.

Methods: In this context, we studied how plants grown from heteromorphic (i.e.

View Article and Find Full Text PDF

Growth and yield reduction of crops due to salt stress have become a serious issue worldwide. is very well known as a plant growth-promoting fungi under abiotic stress conditions. Therefore, this study was designed to investigate the effect of on the growth, yield, nutrient uptake, and antioxidant activity of three Indian mustard genotypes under saline condition (EC 9.

View Article and Find Full Text PDF

The 26S proteasome is a crucial protease complex responsible for degrading specific proteins to maintain cellular function during salt stress. Previous studies have shown that GmRPN11d, a subunit of the regulatory particle in soybean, is upregulated in response to short-term salt stress. This research discovered that GmRPN11d is localized in the nucleus and cytoplasm, with its expression increasing under high salinity and other stress conditions.

View Article and Find Full Text PDF

Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!