Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate measurement of pedaling kinetics and kinematics is vital for optimizing rehabilitation, exercise training, and understanding musculoskeletal biomechanics. Pedal reaction force, the main external force in cycling, is essential for musculoskeletal modeling and closely correlates with lower-limb muscle activity and joint reaction forces. However, sensor instrumentation like 3-axis pedal force sensors is costly and requires extensive postprocessing. Recent advancements in machine learning (ML), particularly neural network (NN) models, provide promising solutions for kinetic analyses. In this study, an NN model was developed to predict radial and mediolateral forces, providing a low-cost solution to study pedaling biomechanics with stationary cycling ergometers. Fifteen healthy individuals performed a 2 min pedaling task at two different self-selected (58 ± 5 RPM) and higher (72 ± 7 RPM) cadences. Pedal forces were recorded using a 3-axis force system. The dataset included pedal force, crank angle, cadence, power, and participants' weight and height. The NN model achieved an inter-subject normalized root mean square error (nRMSE) of 0.15 ± 0.02 and 0.26 ± 0.05 for radial and mediolateral forces at high cadence, respectively, and 0.20 ± 0.04 and 0.22 ± 0.04 at self-selected cadence. The NN model's low computational time suits real-time pedal force predictions, matching the accuracy of previous ML algorithms for estimating ground reaction forces in gait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479353 | PMC |
http://dx.doi.org/10.3390/s24196440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!