Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Uncooled and shutterless microbolometer cameras are good candidates for infrared imaging systems installed on small satellites or small unmanned aerial vehicles: they are light and passive since no cooling system or mechanical shutter is required and they can be operated at ambient temperatures. However, the radiometric compensation has to be carefully performed to make the system compatible with applications where the radiometric accuracy of the images is mandatory. In this paper, we study the impact of the camera environment to the radiometric accuracy of the images. We propose and test hardware and software solutions to improve this accuracy and the quality of the radiometric images. We show that the radiometric calibration of the camera with our model is valid over a long time period- about 3 years-using in-door experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479331 | PMC |
http://dx.doi.org/10.3390/s24196387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!