We present a transparent memristor with a rough-surface (RS) bottom electrode (BE) with enhanced performance and reliability for a gasistor, which is a gas sensor plus a memristor, and its application in this paper. The transparent memristor, with an RS BE, exhibited low forming voltages (0.8 V) and a stable resistive switching behavior, with high endurance and an on/off ratio of about 125. This improvement is due to the better control of the electric field distribution and the oxygen vacancy concentration when applying the RS BE to transparent memristors. Maintaining the stability of the conducting filament in an ambient air environment for extended periods of time is crucial for the application of memristors as gasistors. The memristor with an RS BE demonstrates an ability to sustain a stable-current state for approximately 10 s. As a result, it is shown that the proposed transparent memristor with an RS BE can significantly enhance the device's reliability for gasistor applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479299 | PMC |
http://dx.doi.org/10.3390/s24196382 | DOI Listing |
NPJ 2D Mater Appl
January 2025
School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.
Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
We present a SnO gas sensor with an HfO layer that exhibits enhanced performance and reliability for gasistor applications, combining a gas sensor and a memristor. The transparent SnO gasistor with a 30 nm HfO layer demonstrated low forming voltages (7.1 V) and a high response rate of 81.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.
Recent experimental studies in the awake brain have identified a rule for synaptic plasticity that is instrumental for the instantaneous creation of memory traces in area CA1 of the mammalian brain: Behavioral Time scale Synaptic Plasticity. This one-shot learning rule differs in five essential aspects from previously considered plasticity mechanisms. We introduce a transparent model for the core function of this learning rule and establish a theory that enables a principled understanding of the system of memory traces that it creates.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
This paper presents the results of experimental studies of the influence of high-frequency magnetron sputtering power on the structural and electrophysical properties of nanocrystalline ZnO films. It is shown that at a magnetron sputtering power of 75 W in an argon atmosphere at room temperature, ZnO films have a relatively smooth surface and a uniform nanocrystalline structure. Based on the results obtained, the formation and study of resistive switching of transparent ITO/ZnO/ITO memristor structures as well as a crossbar array based on them were performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!