AI Article Synopsis

  • * Despite initial challenges with low hit rates and the complexity of target peptide design, a "piecemeal" iterative strategy was developed to effectively overcome these issues.
  • * The study details the characterization of an influenza hemagglutinin biosensor, highlighting its shifted excitation/emission spectrum, strong affinity for the target peptide, and unique photo-switching capability.

Article Abstract

The leave-one-out (LOO) green fluorescent protein (GFP) approach to biosensor design combines computational protein design with split protein reconstitution. LOO-GFPs reversibly fold and gain fluorescence upon encountering the target peptide, which can be redefined by computational design of the LOO site. Such an approach can be used to create reusable biosensors for the early detection of emerging biological threats. Enlightening biophysical inferences for nine LOO-GFP biosensor libraries are presented, with target sequences from dengue, influenza, or HIV, replacing beta strands 7, 8, or 11. An initially low hit rate was traced to components of the energy function, manifesting in the over-rewarding of over-tight side chain packing. Also, screening by colony picking required a low library complexity, but designing a biosensor against a peptide of at least 12 residues requires a high-complexity library. This double-bind was solved using a "piecemeal" iterative design strategy. Also, designed LOO-GFPs fluoresced in the unbound state due to unwanted dimerization, but this was solved by fusing a fully functional prototype LOO-GFP to a fiber-forming protein, ultrabithorax, creating a biosensor fiber. One influenza hemagglutinin biosensor is characterized here in detail, showing a shifted excitation/emission spectrum, a micromolar affinity for the target peptide, and an unexpected photo-switching ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478963PMC
http://dx.doi.org/10.3390/s24196380DOI Listing

Publication Analysis

Top Keywords

biosensor design
8
target peptide
8
biosensor
6
design
5
challenges solutions
4
solutions leave-one-out
4
leave-one-out biosensor
4
design context
4
context rugged
4
rugged fitness
4

Similar Publications

Genetically encoded biosensors for the circular plastics bioeconomy.

Metab Eng Commun

December 2024

Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK.

Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology.

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.

View Article and Find Full Text PDF

Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures.

View Article and Find Full Text PDF

A High-Efficiency Electrochemical Biosensor for the Detection of Mucosal-Associated Invariant T Cells.

Anal Chem

December 2024

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!