A novel prototype based on the combination of a multi-junction, high-efficiency photovoltaic (PV) module and a supercapacitor (SC) able to self-power a wireless sensor node (WSN) for outdoor air quality monitoring has been developed and tested. A PV module with about an 8 cm active area made of eight GaAs-based triple-junction solar cells with a nominal 29% efficiency was assembled and characterized under terrestrial clear-sky conditions. Energy is stored in a 4000 F/4.2 V supercapacitor with high energy capacity and a virtually infinite lifetime (10 cycles). The node power consumption was tailored to the typical power consumption of miniaturized, low-consumption NDIR CO sensors relying on an LED as the IR source. The charge/discharge cycles of the supercapacitor connected to the triple-junction PV module were measured under illumination with a Sun Simulator device at selected radiation intensities and different node duty cycles. Tests of the miniaturized prototype in different illumination conditions outdoors were carried out. A model was developed from the test outcomes to predict the maximum number of sensor samplings and data transmissions tolerated by the node, thus optimizing the WSN operating conditions to ensure its self-powering for years of outdoor deployment. The results show the self-powering ability of the WSN node over different insolation periods throughout the year, demonstrating its operation for a virtually unlimited lifetime without the need for battery substitution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478499 | PMC |
http://dx.doi.org/10.3390/s24196340 | DOI Listing |
Adv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
Small high-performance energy modules have significant practical value in the biomedical field, such as painless diagnosis, alleviation of gastrointestinal discomfort, and electrical stimulation therapy. However, due to performance limitations and safety concerns, it is a formidable challenge to design a small, emerging ingestible power supply. Here, a fully ingestible supercapacitor (FISC) constructed of sargassum cellulose nanofiber is presented.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Te Kura Mata-Ao School of Engineering, University of Waikato, New Zealand.
In transcranial magnetic stimulation (TMS), pulsed magnetic fields are applied to the brain, typically requiring high-power stimulators with high voltages and low series impedance. TMS pulse generators for small animal coils, are underexplored, with limited dedicated circuits and simulation models. Here, we present a new design for a high-power TMS pulse generator for small animals, utilizing a pre-charged supercapacitor that is sufficient to produce repeated pulses for TMS applications without the need for recharging.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Power Electronics, Faculty of Electrical Engineering, Gdynia Maritime University, Morska 81-87, Gdynia, 81-225, Poland.
This paper mainly aimed to construct a solar charger with power pack on camouflage fabric (280 × 305 × 3 mm) for military and civil use in mining and reconnaissance set. The solar charger includes a photovoltaic panel, supercapacitor module (composed of 8 supercapacitors XV series), converter (B10-1224-05) and connectors (SP1312/S2 and SP1312/S4). The constructed solar charger was tested in laboratory and field conditions.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Department of Industrial Engineering, University of Florence, Via S. Marta 3, 50039 Florence, Italy.
A novel prototype based on the combination of a multi-junction, high-efficiency photovoltaic (PV) module and a supercapacitor (SC) able to self-power a wireless sensor node (WSN) for outdoor air quality monitoring has been developed and tested. A PV module with about an 8 cm active area made of eight GaAs-based triple-junction solar cells with a nominal 29% efficiency was assembled and characterized under terrestrial clear-sky conditions. Energy is stored in a 4000 F/4.
View Article and Find Full Text PDFChem Asian J
December 2024
School of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian, 350118, China.
As human exploration of marine continues to expand, the demand for underwater devices is also increasing. The unique properties of hydrogel materials make them well-suited for underwater applications. We propose a multi-functional polyvinyl alcohol (PVA) - NaCl @ Polyaniline (PANI) (PNP) hydrogel, which is characterized by easy fabrication, integrated structure, and flexibility, and can be directly applied in the fields of underwater energy storage and underwater sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!