Despite significant advancements in CNN-based object detection technology, adverse weather conditions can disrupt imaging sensors' ability to capture clear images, thereby adversely impacting detection accuracy. Mainstream algorithms for adverse weather object detection enhance detection performance through image restoration methods. Nevertheless, the majority of these approaches are designed for a specific degradation scenario, making it difficult to adapt to diverse weather conditions. To cope with this issue, we put forward a degradation type-aware restoration-assisted object detection network, dubbed DTRDNet. It contains an object detection network with a shared feature encoder (SFE) and object detection decoder, a degradation discrimination image restoration decoder (DDIR), and a degradation category predictor (DCP). In the training phase, we jointly optimize the whole framework on a mixed weather dataset, including degraded images and clean images. Specifically, the degradation type information is incorporated in our DDIR to avoid the interaction between clean images and the restoration module. Furthermore, the DCP makes the SFE possess degradation category awareness ability, enhancing the detector's adaptability to diverse weather conditions and enabling it to furnish requisite environmental information as required. Both the DCP and the DDIR can be removed according to requirement in the inference stage to retain the real-time performance of the detection algorithm. Extensive experiments on clear, hazy, rainy, and snowy images demonstrate that our DTRDNet outperforms advanced object detection algorithms, achieving an average mAP of 79.38% across the four weather test sets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478636 | PMC |
http://dx.doi.org/10.3390/s24196330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!