Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Localization is one of the most challenging problems in wireless sensor networks (WSNs), primarily driven by the need to develop an accurate and cost-effective localization system for Internet of Things (IoT) applications. While machine learning (ML) algorithms have been widely applied in various WSN-based tasks, their effectiveness is often compromised by limited training data, leading to issues such as overfitting and reduced accuracy, especially when the number of sensor nodes is low. A key strategy to mitigate overfitting involves increasing both the quantity and diversity of the training data. To address the limitations posed by small datasets, this paper proposes an intelligent data augmentation strategy (DAS)-based deep neural network (DNN) that enhances the localization accuracy of WSNs. The proposed DAS replicates the estimated positions of unknown nodes generated by the Dv-hop algorithm and introduces Gaussian noise to these replicated positions, creating multiple modified datasets. By combining the modified datasets with the original training data, we significantly increase the dataset size, which leads to a substantial reduction in normalized root mean square error (NRMSE). The experimental results demonstrate that this data augmentation technique significantly improves the performance of DNNs compared to the traditional Dv-hop algorithm at a low number of nodes while maintaining an efficient computational cost for data augmentation. Therefore, the proposed method provides a scalable and effective solution for enhancing the localization accuracy of WSNs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478670 | PMC |
http://dx.doi.org/10.3390/s24196314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!