Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In fermentation processes, changes in yeast cell count and substrate concentration are indicators of yeast performance. Therefore, monitoring the composition of the biological suspension, particularly the dispersed solid phase (i.e., yeast cells) and the continuous liquid phase (i.e., medium), is a prerequisite to ensure favorable process conditions. However, the available monitoring methods are often invasive or restricted by detection limits, sampling requirements, or susceptibility to masking effects from interfering signals. In contrast, ultrasound measurements are non-invasive and provide real-time data. In this study, the suitability to characterize the dispersed and the liquid phase of yeast suspensions with ultrasound was investigated. The ultrasound signals collected from three commercially available yeast were evaluated and compared. For all three yeasts, the attenuation coefficient and speed of sound increased linearly with increasing yeast concentrations (0.0-1.0 wt%) and cell counts (R > 0.95). Further characterization of the dispersed phase revealed that cell diameter and volume density influence the attenuation of the ultrasound signal, whereas changes in the speed of sound were partially attributed to compositional variations in the liquid phase. This demonstrates the ability of ultrasound to monitor industrial fermentations and the feasibility of developing targeted control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478857 | PMC |
http://dx.doi.org/10.3390/s24196271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!