Soil salinity poses a serious threat to rice production. The salt tolerance of rice at the germination stage is one of the major determinants of stable stand establishment, which is very important for direct seeding in saline soil. The complexity and polygenic nature of salt tolerance have limited the efficiency of discovering and cloning key genes in rice. In this study, an RIL population with an ultra-high-density genetic map was employed to investigate the salt-tolerant genetic basis in rice, and a total of 20 QTLs were detected, including a major and stable QTL (). Subsequently, salt-specific DEGs from a comparative transcriptome analysis were overlaid onto annotated genes located on a stable QTL interval, and eight putative candidate genes were further identified. Finally, from the sequence alignment and variant analysis, was confirmed to be the most promising candidate gene for regulating salinity tolerance in rice. This study provides important information for elucidating the genetic and molecular basis of rice salt tolerance at the germination stage, and the genes detected here will be useful for improvements in rice salt tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476921 | PMC |
http://dx.doi.org/10.3390/ijms251910376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!