The annual number of reported human cases of flavivirus infections continues to increase. Measures taken by local healthcare systems and international organizations are not fully successful. In this regard, new approaches to treatment and prevention of flavivirus infections are relevant. One promising approach is to use monoclonal antibody preparations. The mouse mAb 10H10 is capable of interacting with viruses belonging to the genus which are pathogenic to humans. ELISA and molecular modeling data can indicate that mAb 10H10 recognizes the fusion loop region of E protein. The KD of interaction between the mAb 10H10 and recombinant analogs of the E protein of the tick-borne encephalitis (TBEV), Zika (ZIKV) and dengue (DENV) viruses range from 1.5 to 4 nM. The aim of this study was to map the epitope of this antibody using phage display technology. After three rounds of biopanning, 60 individual phage clones were chosen. The amino acid sequences of the selected peptides were conveniently divided into five groups. Based on the selected peptides, bacteriophages were obtained carrying peptides on the surfaces of the pIII and pVIII proteins, which were tested for binding to the antibody in ELISA. Thus, the epitope of the mAb 10H10 is the highly conserved region 98-DRGWGNXXGLFGK-110 of the flavivirus E protein. The structures of the complexes of the identified peptides with the antibody paratope are proposed using the molecular docking and dynamics methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476565PMC
http://dx.doi.org/10.3390/ijms251910311DOI Listing

Publication Analysis

Top Keywords

mab 10h10
16
phage display
8
monoclonal antibody
8
flavivirus infections
8
selected peptides
8
antibody
5
10h10
5
display revealed
4
revealed complex
4
complex structure
4

Similar Publications

The annual number of reported human cases of flavivirus infections continues to increase. Measures taken by local healthcare systems and international organizations are not fully successful. In this regard, new approaches to treatment and prevention of flavivirus infections are relevant.

View Article and Find Full Text PDF

Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses.

View Article and Find Full Text PDF

Crystal structure of tissue factor in complex with antibody 10H10 reveals the signaling epitope.

Cell Signal

August 2017

Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA.

Tissue factor (TF) initiates the extrinsic pathway of blood coagulation through sequential binding and activation of coagulation factors VII (FVII) and X (FX). In addition, through activation of G-protein-coupled protease activated receptors (PARs) TF induces cell signaling that is related to cancer, angiogenesis and inflammation. Monoclonal antibodies (mAbs) proved to be a useful tool for studying the interplay between TF signaling and coagulation.

View Article and Find Full Text PDF

In vitro and descriptive studies of human tissue samples revealed the pro-coagulant glycoprotein tissue factor (TF) as a potent player in glioma cell infiltration that is activated by hypoxia and has also been shown to be upregulated by mutations of TP53 or PTEN. Here we present the morphological and genetic characterization of a novel glioblastoma in vivo model and provide evidence that treatment with an antibody targeting TF leads to reduced glioma cell invasiveness. Therefore, we established a murine xenograft treatment model by transplanting the angiogenic and diffusely infiltrating human glioma cell line MZ-18 with endogenous TF expression into nude mice brains and treating these mice with an intracranial osmotic pump system continuously infusing a monoclonal antibody against TF (mAb TF9-10H10).

View Article and Find Full Text PDF

Tissue factor (TF) is upregulated in several malignant diseases, including gliomas. Here, we demonstrate pronounced differences in the expression of TF and its interactors factor VII and protease-activated receptor 2 (PAR-2) in nine human glioma cell lines (U87, U251, U343, U373, MZ-18, MZ-54, MZ-256, MZ-304, Hs 683) as detected by RT-PCR and Western blot analysis. Inhibition of TF signaling by a neutralizing monoclonal antibody (mAb TF9-10H10) led to significantly reduced proliferation in high-grade astroglial (MZ-18 and MZ-304) and oligodendroglial (Hs 683) cell lines abundantly expressing TF, but not in U373 cells expressing low amounts of TF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!