GQ262 Attenuates Pathological Cardiac Remodeling by Downregulating the Akt/mTOR Signaling Pathway.

Int J Mol Sci

Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.

Published: September 2024

Cardiac remodeling, a critical process that can lead to heart failure, is primarily characterized by cardiac hypertrophy. Studies have shown that transgenic mice with Gαq receptor blockade exhibit reduced hypertrophy under induced pressure overload. GQ262, a novel Gαq/11 inhibitor, has demonstrated good biocompatibility and specific inhibitory effects on Gαq/11 compared to other inhibitors. However, its role in cardiac remodeling remains unclear. This study aims to explore the anti-cardiac remodeling effects and mechanisms of GQ262 both in vitro and in vivo, providing data and theoretical support for its potential use in treating cardiac remodeling diseases. Cardiac hypertrophy was induced in mice via transverse aortic constriction (TAC) for 4 weeks and in H9C2 cells through phenylephrine (PE) induction, confirmed with WGA and H&E staining. We found that GQ262 improved cardiac function, inhibited the protein and mRNA expression of hypertrophy markers, and reduced the levels of apoptosis and fibrosis. Furthermore, GQ262 inhibited the Akt/mTOR signaling pathway activation induced by TAC or PE, with its therapeutic effects disappearing upon the addition of the Akt inhibitor ARQ092. These findings reveal that GQ262 inhibits cardiomyocyte hypertrophy and apoptosis through the Akt/mTOR signaling pathway, thereby reducing fibrosis levels and mitigating cardiac remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476524PMC
http://dx.doi.org/10.3390/ijms251910297DOI Listing

Publication Analysis

Top Keywords

cardiac remodeling
20
akt/mtor signaling
12
signaling pathway
12
cardiac
8
cardiac hypertrophy
8
hypertrophy induced
8
gq262
6
remodeling
6
hypertrophy
5
gq262 attenuates
4

Similar Publications

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.

View Article and Find Full Text PDF

Targeting Fibroblast Activation Protein for Molecular Imaging of Fibrotic Remodeling in Pulmonary Arterial Hypertension.

J Nucl Med

January 2025

Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and

The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

The Role of WNT5a and TGF-β1 in Airway Remodelling and Severe Asthma.

Allergy

January 2025

Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK.

Background: Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling.

Methods: WNT5a and TGF-β protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!