The incorporation of multi-omics data methodologies facilitates the concurrent examination of proteins, metabolites, and genes associated with inflammation, thereby leveraging multi-dimensional biological data to achieve a comprehensive understanding of the complexities involved in the progression of inflammation. Inspired by ensemble learning principles, we implemented ID normalization preprocessing, categorical sampling homogenization, and pathway enrichment across each sample matrix derived from multi-omics datasets available in the literature, directing our focus on inflammation-related targets within lipopolysaccharide (LPS)-stimulated RAW264.7 cells towards β-alanine metabolism. Additionally, through the use of LPS-treated RAW264.7 cells, we tentatively validated the anti-inflammatory properties of the metabolite Ureidopropionic acid, originating from β-alanine metabolism, by evaluating cell viability, nitric oxide production levels, and mRNA expression of inflammatory biomarkers. In conclusion, our research represents the first instance of an integrated analysis of multi-omics datasets pertaining to LPS-stimulated RAW264.7 cells as documented in the literature, underscoring the pivotal role of β-alanine metabolism in cellular inflammation and successfully identifying Ureidopropionic acid as a novel anti-inflammatory compound. Moreover, the findings from database predictions and molecular docking studies indicated that the inflammatory-related pathways and proteins may serve as potential mechanistic targets for Ureidopropionic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476852 | PMC |
http://dx.doi.org/10.3390/ijms251910252 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!