Magnetic Nanoparticles in Biopolymer Fibers: Fabrication Techniques and Characterization Methods.

Polymers (Basel)

Graduate Program in Metallurgical Engineering (PPGEM), EEIMVR, Fluminense Federal University, Avenida dos Trabalhadores, 420, Volta Redonda 27225-125, RJ, Brazil.

Published: October 2024

Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a backbone, and could act as a support structure for the NPs. This shift towards biopolymers over traditional synthetic polymers is motivated by their sustainability, compatibility with biological systems, non-toxic nature, and natural decomposition. This study employed the solution blow spinning (SBS) method to obtain a nanocomposite comprising poly(vinyl pyrrolidone), PVA, and gelatin biodegradable polymer fibers incorporated with magnetic iron oxide nanoparticles coated with poly(acrylic acid), PAA, coded as γ-FeO-NPs-PAA. The fiber production process entailed a preliminary investigation to determine suitable solvents, polymer concentrations, and spinning parameters. γ-FeO-NPs were synthesized via chemical co-precipitation as maghemite and coated with PAA through the precipitation-redispersion protocol in order to prepare γ-FeO-NPs-PAA. Biopolymeric fibers containing coated NPs with sub-micrometer diameters were obtained, with NP concentrations ranging from 1.0 to 1.7% wt. The synthesized NPs underwent characterization via dynamic light scattering, zeta potential analysis, and infrared spectroscopy, while the biopolymer fibers were characterized through scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Overall, this study demonstrates the successful implementation of SBS for producing biopolymeric fibers incorporating iron oxide NPs, where the amalgamation of materials demonstrated superior thermal behavior to the plain polymers. The thorough characterization of the NPs and fibers provided valuable insights into their properties, paving the way for their potential applications in various fields such as biomedical engineering, environmental remediation, and functional materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478581PMC
http://dx.doi.org/10.3390/polym16192805DOI Listing

Publication Analysis

Top Keywords

biopolymer fibers
12
fibers incorporated
8
iron oxide
8
biopolymeric fibers
8
infrared spectroscopy
8
fibers
7
nps
7
magnetic nanoparticles
4
biopolymer
4
nanoparticles biopolymer
4

Similar Publications

Background: Patients admitted to the intensive care unit (ICU) often have gut colonization with pathogenic bacteria and such colonization is associated with increased risk for death and infection. We conducted a trial to determine whether a prebiotic would improve the gut microbiome to decrease gut pathogen colonization and decrease downstream risk for infection among newly admitted medical ICU patients with sepsis.

Methods: This was a randomized, double-blind, placebo-controlled trial of adults who were admitted to the medical ICU for sepsis and were receiving broad-spectrum antibiotics.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci

December 2024

Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.

This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.

View Article and Find Full Text PDF

Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.

View Article and Find Full Text PDF

The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!