Extrusion processing of plasticized cassava starch, a prominent industrial crop, with chemical additives offers a thermo-mechanical approach to modify starch structures through physical and chemical interactions. This research investigates the interaction and morphology of thermoplastic cassava starch (TPS) blended with tetrasodium pyrophosphate (NaPO), sodium tripolyphosphate (NaPO), sodium hexametaphosphate (Na(PO)), sodium erythorbate (CHONa), and sodium nitrite (NaNO) via twin-screw extrusion. The effects of these additives on the chemical structure, thermal profile, water absorption, and solubility of the TPS were examined. The high temperature and shearing forces within the extruder disrupted hydrogen bonding at α-(1-4) and α-(1-6) glycosidic linkages within anhydroglucose units. NaPO, NaPO and Na(PO) induced starch phosphorylation, while H NMR and ATR-FTIR analyses revealed that CHONa and NaNO caused starch hydrolysis. These additives hindered starch recrystallization, resulting in higher amorphous fractions that subsequently influenced the thermal properties and stability of the extruded TPS. Furthermore, the type and content of the added modifier influenced the water absorption and solubility of the TPS due to varying levels of interaction. These modified starch materials exhibited enhanced antimicrobial properties against and in polyester blends fabricated via extrusion, with nitrite demonstrating the most potent antimicrobial efficacy. These findings suggest that starch modification via either phosphorylation or acid hydrolysis impacts the thermal properties, morphology, and hydrophilicity of extruded cassava TPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478379 | PMC |
http://dx.doi.org/10.3390/polym16192787 | DOI Listing |
J Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFFoods
January 2025
Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia.
Dietary fibre deficiency has been associated with various global health challenges. Starch, as a main component of many staple foods, is typically very low in fibre content. The primary aim of this research was to increase the dietary fibre and alter the physicochemical properties of some common and emerging starches (cassava, quinoa, and chickpea starch) using eco-friendly modifications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China. Electronic address:
This study aimed to investigate the effects of laminarin (LA) and ferulic acid (FA) on the gelatinization, rheological properties, freeze-thaw stability, and digestibility of cassava starch (CS). The results indicated that LA increased the peak viscosity, trough viscosity, final viscosity, storage modulus, and loss modulus of CS, while decreasing the breakdown viscosity. Conversely, FA exerted opposite effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:
In this experiment, the effects of different concentrations of cassava starch (CS) on the gel behavior of faba bean protein (FBP) were studied, focusing on the structural characteristics, gel characteristics and physical and chemical characteristics of the gel system. Specifically, with the increase of CS concentration from 4 % to 12 %, the morphology of the sample changed from fluid to gel solid. From the molecular structure, different concentrations of CS affected the secondary and tertiary structures of FBP protein, which made aromatic amino acids move to the surface of protein and promoted the transformation from α-helix to β-sheet.
View Article and Find Full Text PDFCarbohydr Res
January 2025
School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, N3300LQH, Posadas, Misiones, Argentina.
The objective of the present study was to optimize an enzymatic starch extraction process from cassava roots using a polyglacturonase (PGase) from a wild yeast strain (Wickerhanomyces anomalus). The supernatant of W. anomalus culture, with PGase activity, was used as source of enzyme (enzymatic extract, EE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!