This study investigates the effectiveness of various chemical methods, both ultrasound-assisted and non-assisted, for extracting cellulose from banana pseudostem (BPS) waste, comparing the results with commercial pine and eucalyptus cellulose fibers. Delignification treatments with NaOH (25% and 30%) and HO (8%) were evaluated, applied with both conventional and focused sonication. Ultrasound-assisted methods, particularly with NaOH, achieved cellulose percentages as high as 99.5%. X-ray diffraction (XRD) analysis revealed that NaOH treatments significantly increased the cellulose crystallinity index, reaching up to 67.9%, surpassing commercial fibers. Scanning electron microscopy (SEM) results showed that NaOH treatments, especially at 30%, improved fiber morphology and exposure. Thermogravimetric analysis (TGA) indicated that methods using NaOH and focused sonication enhanced the thermal stability of the cellulose. Compared to commercial fibers, some samples obtained with the proposed methods demonstrated higher purity, yield, and thermal stability, highlighting the effectiveness of ultrasound-assisted and NaOH methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479204 | PMC |
http://dx.doi.org/10.3390/polym16192785 | DOI Listing |
Plant Dis
December 2024
Universidad de las Fuerzas Armadas, Ciencias de la Vida y la Agricultura, Sangolqui, Pichincha, Ecuador;
Bananas are Ecuador's second largest non-oil export product, and the quality of its fruit has established a strong presence in international markets. One-third of the world's banana exports originate from Ecuador. The Ecuadorian banana market is diversified, exporting fruit to various countries worldwide, making it a vital socio-economic and food security support for the country.
View Article and Find Full Text PDFDiabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice.
View Article and Find Full Text PDFPrep Biochem Biotechnol
December 2024
Department of Agriculture Compound Quezon Memorial, Philippine Fiber Industry Development Authority (PhilFIDA), Quezon City, Philippines.
Isolation of high-quality RNA from abaca is very challenging due to the presence of polyphenols, polysaccharides, and its high fiber content. In this study, we compared six extraction methods across three tissue types and different developmental stages (-grown young versus field-grown mature tissue). The Invitrogen PureLink RNA kit proved to be the most efficient in extracting RNA from young abaca tissues (leaves, pseudostem, and corm).
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Environmental Remediation and Biocatalysis, Institute of Chemistry, University of Antioquia UdeA, Medellín CP 050010, Colombia.
A carbon-based material was synthesized using potato peels (BPP) and banana pseudo-stems (BPS), both of which were modified with manganese to produce BPP-Mn and BPS-Mn, respectively. These materials were assessed for their ability to activate peroxymonosulfate (PMS) in the presence of MnCO to degrade acetaminophen (ACE), an emerging water contaminant. The materials underwent characterization using spectroscopic, textural, and electrochemical techniques.
View Article and Find Full Text PDFChemosphere
December 2024
Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt.
While the industrial sectors have recently focused on producing bioplastic materials, the utilization of edible feedstocks and the generation of wastes and byproducts during the bioplastic synthesis process might delay achieving the environmental sustainability strategy. To overcome these limitations related to bioplastic industrialization, this study focuses on synthesizing bioplastics from waste sources, followed by recycling its end-of-life (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!