Synergistic Effects of Liquid Rubber and Thermoplastic Particles for Toughening Epoxy Resin.

Polymers (Basel)

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.

Published: September 2024

AI Article Synopsis

  • * Three experimental systems were created: one reinforced with phenolphthalein poly(aryl ether ketone) (PEK-C), another with carboxyl-terminated butyl liquid rubber (CTBN), and a third combining both for a synergistic effect.
  • * Results indicate that while PEK-C does not chemically react with the epoxy, CTBN does, leading to significant improvements in impact toughness without compromising other thermal and mechanical properties, demonstrating the added benefits of using both toughening agents together.

Article Abstract

This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) and 4,4-Diamino diphenyl methane (Ag-80) as matrix resin, 4,4-diaminodiphenyl sulfone (DDS) as a curing agent, and phenolphthalein poly (aryl ether ketone) particles (PEK-C) and carboxyl-terminated butyl liquid rubber (CTBN) as toughening agents. These systems are classified as an EP/PEK-C toughening system, EP/CTBN toughening system, and EP/PEK-C/CTBN synergistic toughening system. The curing behavior, thermal properties, mechanical properties, and phase structure of the synergistic-toughened EP systems were comprehensively investigated. The results showed that PEK-C did not react with EP, while CTBN reacted with EP to form a flexible block polymer. The impact toughness of EP toughened by PEK-C/CTBN was improved obviously without significantly increasing viscosity or decreasing thermal stability, flexural strength, and modulus, and the synergistic toughening effect was significantly higher than that of the single toughening system. The notable improvement in toughness is believed to be due to the synergistic energy dissipation effect of PEK-C/CTBN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478654PMC
http://dx.doi.org/10.3390/polym16192775DOI Listing

Publication Analysis

Top Keywords

toughening system
16
epoxy resin
12
liquid rubber
8
rubber thermoplastic
8
thermoplastic particles
8
toughening
8
synergistic toughening
8
synergistic
5
synergistic effects
4
effects liquid
4

Similar Publications

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

Distorting crack-front geometry for enhanced toughness by manipulating bioinspired heterogeneity.

Nat Commun

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.

Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.

View Article and Find Full Text PDF

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

This study presents the design and experimental evaluation of advanced corrosion protection coatings for application on prestressing strands which are the core constituents of prestressed concrete structures such as bridges. Variety of self-heal coatings embodying corrective and protective phenomena in response to the degrading effects of corrosion have been designed and tested in simulated aggressive weathering conditions. Standard 7-wire prestressing strands coated with self-heal epoxy, self-heal toughened epoxy and hybrid epoxy coating systems were subjected to salt fog spray up to a duration of 2500 h, and 3M CalCl, 3M NaOH, saturated Ca(OH) solutions and distilled water up to 45 days duration.

View Article and Find Full Text PDF

Constructing High-Performance Composite Epoxy Resins: Interfacial π-π Stacking Interactions-Driven Physical Rolling Behavior of Silica Microspheres.

Adv Mater

December 2024

School of Materials and Chemistry and State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, 59, Middle Qinglong Avenue, Mianyang, 621010, P. R. China.

The intrinsic compromise between strength and toughness in composite epoxy resins significantly constrains their practical applications. In this study, a novel strategy is introduced, leveraging interfacial π-π stacking interactions to induce the "rolling behavior" of microsphere fillers, thereby facilitating efficient energy dissipation. This approach is corroborated through theoretical simulations and experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!