A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of Ultrahigh Molecular Weight Poly (Trifluoroethyl Methacrylate) Initiated by the Combination of Palladium Nanoparticles with Organic Halides. | LitMetric

Ultrahigh molecular weight polymers display outstanding properties and have great application potential. However, the traditional polymerization methods have inevitable disadvantages that challenge the green synthesis of ultrahigh molecular weight polymers. The paper achieved an ultrahigh molecular weight poly (trifluoroethyl methacrylate) via a novel polymerization and discussed the mechanistic, kinetic, and experimental aspects. The combination of palladium nanoparticles with ethyl 2-bromopropionate has been identified as an exceedingly efficient system for initiating the polymerization of trifluoroethyl methacrylate. An ultrahigh molecular weight poly (trifluoroethyl methacrylate) with a number-average molecular weight up to 3.03 × 10 Da has been synthesized at a feeding molar ratio of [poly (trifluoroethyl methacrylate)]/[ethyl 2-bromopropionate]/[palladium nanoparticles] = 3.95 × 10:756:1 at 70 °C. The reaction orders concerning palladium nanoparticles, ethyl 2-bromopropionate, and poly (trifluoroethyl methacrylate) were determined to be 0.59, 0.34, and 1.38, respectively. By analyzing a series of characterizations, we verified that the polymerization of poly (trifluoroethyl methacrylate) was initiated by the ethyl 2-bromopropionate residue radicals, which were generated from the interaction between palladium nanoparticles and ethyl 2-bromopropionate. The comparatively large size of the palladium nanoparticles provided a barrier to chain-growing radicals, promoting the synthesis of ultrahigh molecular weight polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479292PMC
http://dx.doi.org/10.3390/polym16192764DOI Listing

Publication Analysis

Top Keywords

molecular weight
28
ultrahigh molecular
24
trifluoroethyl methacrylate
24
poly trifluoroethyl
20
palladium nanoparticles
20
ethyl 2-bromopropionate
16
synthesis ultrahigh
12
weight poly
12
weight polymers
12
nanoparticles ethyl
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!