Silica, as a high-quality reinforcing filler, can satisfy the requirements of high-performance green tread rubber with high wet-skid resistance, low rolling resistance, and low heat generation. However, the silica surface contains abundant silicon hydroxyl groups, resulting in a severe aggregation of silica particles in non-polar rubber matrix. Herein, we explored a carbon black (CB)/silica hybrid reinforcing strategy to prepare epoxidized natural rubber (ENR)-based vulcanizates. Benefiting from the reaction and interaction between the epoxy groups on ENR chains and the silicon hydroxyl groups on silica surfaces, the dispersion uniformity of silica in the ENR matrix was significantly enhanced. Meanwhile, the silica can facilitate the dispersity and reinforcing effect of CB particles in the ENR matrix. By optimizing the CB/silica blending ratios, we realized high-performance ENR vulcanizates with simultaneously improved mechanical strength, wear resistance, resilience, anti-aging, and damping properties, as well as reduced heat generation and rolling resistance. For example, compared with ENR vulcanizates with only CB fillers, those with CB/silica hybrid fillers showed ~10% increase in tensile strength, ~20% increase in elongation at break, and ~20% increase in tensile retention rate. These results indicated that the ENR compounds reinforced with CB/silica hybrid fillers are a promising candidate for high-performance green tread rubber materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479240 | PMC |
http://dx.doi.org/10.3390/polym16192762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!