Stretchable composite conductive fibers (SCCFs) exhibit remarkable conductivity, stretchability, breathability, and biocompatibility, making them ideal candidates for wearable electronics and bioelectronics. The exploitation of SCCFs in electronic devices requires a careful balance of many aspects, including material selection and process methodologies, to address the complex challenges associated with their electrical and mechanical properties. In this review, we elucidate the conductive mechanism of SCCFs and summarize strategies for integrating various conductors with stretchable fibers, emphasizing the primary challenges in fabricating highly conductive fibers. Furthermore, we explore the multifaceted applications of SCCFs-based frameworks in wearable electronic devices. This review aims to emphasize the significance of SCCFs and offers insights into their conductive mechanisms, material selection, manufacturing technologies, and performance improvement. Hopefully, it can guide the innovative development of SCCFs and broaden their application potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478555 | PMC |
http://dx.doi.org/10.3390/polym16192710 | DOI Listing |
Sci Rep
January 2025
Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.
View Article and Find Full Text PDFSci Rep
January 2025
Nursing Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 17, 3rd Floor 79 Qingchun Road, Hangzhou, 310003, China.
The quality of bowel preparation is an important factor in the success of colonoscopy. However, multiple influencing factors that function together can lead to inadequate bowel preparation. The main objective of this study was to explore the specific factors that affect the quality of bowel preparation, with the goal of deriving and validating a predictive model for inadequate bowel preparation in Chinese outpatients.
View Article and Find Full Text PDFSci Rep
January 2025
Nanjing ShengNuo Heat Pipe Limited Company, Nanjing, 210009, China.
This study investigates the feasibility of using nano-thermal rod for deicing tunnel pavements in cold region. The heating performance of the nano-thermal rod was compared with that of carbon fiber heating wire under low voltage conditions. Experimental studies were conducted in a controlled environmental chamber to evaluate the effects of arrangement parameters (spacing, buried depth, input power) and environmental factors (ambient temperature and moisture) on heating rate and effectiveness.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh.
This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!