AI Article Synopsis

  • The study investigated fluoride intake and excretion in Mexican women consuming fluoridated salt, analyzing data from 31 participants through dietary recalls and urine collections.
  • Researchers found that median fluoride intake and excretion were around 0.95 and 0.90 mg/day, with better measurement agreements below 1.5 mg/day.
  • Three dietary patterns ("Urban Convenience," "Plant-based," and "Egg-based") were identified, with the "Urban Convenience" pattern linked to increased fluoride intake and a slight decrease in urinary fluoride.

Article Abstract

Abundant information exists on fluoride intake and excretion in populations exposed to fluoridated water, but not fluoridated salt, where fluoride is eaten through a combination of foods and beverages. This study assessed associations between dietary patterns, fluoride intake and excretion in Mexican women exposed to fluoridated salt. We estimated dietary fluoride intake and excretion (mg/day) from 31 women using 24-h recalls (ASA24) and 24-h urine collections (HDMS diffusion method) and assessed agreement among both estimates of exposure with a Bland-Altman plot. Dietary patterns among the sample were explored by Principal Component Analysis and associations between these patterns and both fluoride intake and excretion were estimated. using Quantile Regressions. Median dietary fluoride intake and excretion were 0.95 and 0.90 mg/day, respectively, with better agreement at values below 1.5 mg/day. We identified three dietary patterns: "Urban Convenience", "Plant-based" and "Egg-based". The "Urban Convenience" pattern, characterized by dairy and convenience foods was associated with an increase of 0.25 mg and 0.34 mg of F in the 25th and 50th percentiles of intake respectively, ( < 0.01), and a marginal 0.22 mg decrease in urinary fluoride ( = 0.06). In conclusion, in this sample of Mexican women, a dietary pattern rich in dairy and convenience foods, was associated with both fluoride intake and excretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479219PMC
http://dx.doi.org/10.3390/nu16193404DOI Listing

Publication Analysis

Top Keywords

fluoride intake
28
intake excretion
28
dietary patterns
16
patterns fluoride
12
exposed fluoridated
12
fluoridated salt
12
fluoride
9
associations dietary
8
intake
8
women exposed
8

Similar Publications

Broad-based targeted lipidomic analysis of dental fluorosis population in an adult population.

Chem Phys Lipids

January 2025

College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No.81, Meishan Road, Shushan District, Hefei City, 230032 China. Electronic address:

Dental fluorosis, as a common chronic fluoride toxicity oral disease, is mainly caused by long-term excessive intake of fluoride, which seriously affects the aesthetics and function of patients' teeth. In recent years, with the rapid development of metabolomics technology, lipidomics, as an important means to study the changes in lipid metabolism in organisms, has shown great potential in revealing the mechanisms of disease development. As a major component of cell membranes and a signaling molecule, metabolic disorders of lipids are closely related to a variety of diseases, but the specific mechanism of action in dental fluorosis is still unclear.

View Article and Find Full Text PDF

Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study.

View Article and Find Full Text PDF

Long-term intake of high-fluoride water can cause fluorosis in bones and teeth or damage to organs. Fluoride in groundwater is primarily derived from reactions with rocks containing fluorine-related minerals, and fluoride concentrations are elevated in groundwater that has been reacting with these rocks for a long time. The purpose of this study is to investigate the origin and distribution of fluoride in groundwater and to assess the influence of various factors, including geology, on fluoride concentrations in groundwater.

View Article and Find Full Text PDF

The potential of urinary miR-200c-3p as a biomarker of fluorosis in rats.

Ecotoxicol Environ Saf

January 2025

Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China. Electronic address:

Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker.

View Article and Find Full Text PDF

Evolution characteristics and causes of iodine and fluoride in groundwater of Hengshui city in North China.

Sci Rep

December 2024

Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang, 050031, China.

Iodine and fluoride are essential trace elements for human health, with both deficiency and excess intake impacting well-being. This study investigates the groundwater funnel area in eastern Hengshui City, utilizing groundwater level and hydrochemical data from 2014 to 2022. Hydrogeochemical methods were employed to comprehensively analyze the evolution characteristics and causes of iodine and fluoride concentrations in the funnel area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!