AI Article Synopsis

  • Phenazine natural products are colored nitrogen-based compounds produced by various microorganisms from marine and terrestrial sources, known for their diverse chemical structures and pharmacological activities.
  • These compounds exhibit a range of biological effects, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal properties, making them valuable for medicine and agriculture.
  • The review compiles over 150 phenazine variants and summarizes their antimicrobial and anticancer capabilities, serving as a resource for future research in this field.

Article Abstract

Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, -methylated, -methylated, -oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477647PMC
http://dx.doi.org/10.3390/molecules29194771DOI Listing

Publication Analysis

Top Keywords

phenazine natural
8
natural products
8
chemical structures
8
biological activities
8
antimicrobial anticancer
8
activities review
8
advances phenazine
4
natural
4
products chemical
4
structures biological
4

Similar Publications

Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.

View Article and Find Full Text PDF

CK2α-mediated phosphorylation of DUB3 promotes YAP1 stability and oncogenic functions.

Cell Death Dis

January 2025

Department of General Surgery, Guangzhou Red Cross Hospital/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, China.

The aberrant upregulation of Yes-associated protein 1 (YAP1) in a variety of solid cancers contributes to tumor progression and poor clinical outcomes, rendering it an appealing therapeutic target. However, effective therapies to directly target YAP1 remain challenging. In this study, we perform a high-throughput screening and identify Casein kinase II (CK2) as an uncharacterized upstream regulator of YAP1 turnover in cancer cells of ovarian cancer and several other cancer types.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M.

View Article and Find Full Text PDF

Photo-thermo-electric conversion devices represent a promising technology for converting solar energy into electrical energy. Photothermal materials, as a critical component, play a significant role in efficient conversion from solar energy into thermal energy and subsequently electrical energy, thereby directly influencing the overall system's efficiency in solar energy utilization. However, the application of single-component photothermal materials in photo-thermo-electric conversion systems remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!