Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The solid electrolyte interface (SEI) plays a critical role in determining the performance, stability, and longevity of batteries. This review comprehensively compares the construction strategies of the SEI in Li and Mg batteries, focusing on the differences and similarities in their formation, composition, and functionality. The SEI in Li batteries is well-studied, with established strategies that leverage organic and inorganic components to enhance ion diffusion and mitigate side reactions. In contrast, the development of the SEI in Mg batteries is still in its initial stages, facing significant challenges such as severe passivation and slower ion kinetics due to the divalent nature of magnesium ions. This review highlights various approaches to engineering SEIs in both battery systems, including electrolyte optimization, additives, and surface modifications. Furthermore, it discusses the impact of these strategies on electrochemical performance, cycle life, and safety. The comparison provides insights into the underlying mechanisms, challenges, and future directions for SEI research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478401 | PMC |
http://dx.doi.org/10.3390/molecules29194761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!