A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Construction Strategies of Solid Electrolyte Interface (SEI) in Li Battery and Mg Battery-A Review. | LitMetric

Comparison of Construction Strategies of Solid Electrolyte Interface (SEI) in Li Battery and Mg Battery-A Review.

Molecules

National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Published: October 2024

The solid electrolyte interface (SEI) plays a critical role in determining the performance, stability, and longevity of batteries. This review comprehensively compares the construction strategies of the SEI in Li and Mg batteries, focusing on the differences and similarities in their formation, composition, and functionality. The SEI in Li batteries is well-studied, with established strategies that leverage organic and inorganic components to enhance ion diffusion and mitigate side reactions. In contrast, the development of the SEI in Mg batteries is still in its initial stages, facing significant challenges such as severe passivation and slower ion kinetics due to the divalent nature of magnesium ions. This review highlights various approaches to engineering SEIs in both battery systems, including electrolyte optimization, additives, and surface modifications. Furthermore, it discusses the impact of these strategies on electrochemical performance, cycle life, and safety. The comparison provides insights into the underlying mechanisms, challenges, and future directions for SEI research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478401PMC
http://dx.doi.org/10.3390/molecules29194761DOI Listing

Publication Analysis

Top Keywords

sei batteries
12
construction strategies
8
solid electrolyte
8
electrolyte interface
8
interface sei
8
sei
6
comparison construction
4
strategies
4
strategies solid
4
sei battery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!