Despite extensive studies of deposited carbon in Fischer-Tropsch synthesis (FTS), an atomic-level comprehension of the effect of carbon on the morphology of cobalt-based FTS catalysts remains elusive. The adsorption configurations of carbon atoms on different crystal facets of hexagonal close-packed (hcp) Co nanoparticles were studied using density functional theory (DFT) calculations to explore the interaction mechanism between C and Co surfaces. The weaker adsorption strength of C atoms on Co(0001), Co(10-10), and Co(11-20) surfaces accounted for lower diffusion energy, leading to the facile formation of C dimers. Electronic property analysis shows that more electrons are transferred from Co surfaces to C atoms on corrugated facets than on flat facets. The deposition of carbon atoms on Co nanoparticles affects surface energy by forming strong Co-C bonds, which causes the system to reach a more energetically favorable morphology with an increased proportion of exposed Co(10-12) and Co(11-20) areas as the carbon content increases slightly. This transformation in morphology implies that C deposition plays a crucial role in determining the facet proportion and stability of exposed Co surfaces, contributing to the optimization of cobalt-based catalysts with improved performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478246 | PMC |
http://dx.doi.org/10.3390/molecules29194760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!