The success of composite materials is attributed to the nature of bonding at the nanoscale and the resulting structure-related properties. This study reports on the interaction, electronic, and optical properties of diamond nanothread/polymers (cellulose and epoxy) and boron nitride nanotube/calcium silicate hydrate composites using density functional theory modeling. Our findings indicate that the interaction between the nanothread and polymer is due to van der Waals-type bonding. Minor modifications in the electronic structures and absorption spectra are noticed. Conversely, the boron nitride nanotube-calcium silicate hydrate composite displays an electron-shared type of interaction. The electronic structure and optical absorption spectra of the diamond nanothread and boron nitride nanotube in all configurations studied in the aforementioned composite systems are well maintained. Our findings offer an electronic-level perspective into the bonding characteristics and electronic-optical properties of diamond nanothread/polymer and boron nitride nanotube/calcium silicate hydrate composites for developing next-generation materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477966 | PMC |
http://dx.doi.org/10.3390/molecules29194693 | DOI Listing |
J Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!