Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Porous carbon materials have gained increasing attention in catalysis applications due to their tailorable surface properties, large specific surface area, excellent thermal stability, and low cost. Even though porous carbon materials have been employed for thermal-catalytic dry reforming of methane (DRM), the structure-function relationship, especially the critical factor affecting catalytic performance, is still under debate. Herein, various porous carbon-based samples with disparate pore structures and surface properties are prepared by alkali (KCO) etching and the following CO activation of low-cost petroleum pitch. Detailed characterization clarifies that the quinone/ketone carbonyl functional groups on the carbon surface are the key active sites for DRM. Density functional theory (DFT) calculations also show that the C=O group have the lowest transition state energy barrier for CH* cleavage to CH* (2.15 eV). Furthermore, the cooperative interplay between the specific surface area and quinone/ketone carbonyl is essential to boost the cleavage of C-H and C-O bonds, guaranteeing enhanced DRM catalytic performance. The MC-600-800 catalyst exhibited an initial CH conversion of 51% and a reaction rate of 12.6 mmol g h at 800 °C, CH:CO:N= 1:1:8, and GHSV = 6000 mL g h. Our work could pave the way for the rational design of metal-free carbon-based DRM catalysts and shed new light on the high value-added utilization of heavy oils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477714 | PMC |
http://dx.doi.org/10.3390/molecules29194642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!