A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing.

Molecules

Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Published: September 2024

Graphene and MXenes have emerged as promising materials for gas sensing applications due to their unique properties and superior performance. This review focuses on the fabrication techniques, applications, and sensing mechanisms of graphene and MXene-based composites in gas sensing. Gas sensors are crucial in various fields, including healthcare, environmental monitoring, and industrial safety, for detecting and monitoring gases such as hydrogen sulfide (HS), nitrogen dioxide (NO), and ammonia (NH). Conventional metal oxides like tin oxide (SnO) and zinc oxide (ZnO) have been widely used, but graphene and MXenes offer enhanced sensitivity, selectivity, and response times. Graphene-based sensors can detect low concentrations of gases like HS and NH, while functionalization can improve their gas-specific selectivity. MXenes, a new class of two-dimensional materials, exhibit high electrical conductivity and tunable surface chemistry, making them suitable for selective and sensitive detection of various gases, including VOCs and humidity. Other materials, such as metal-organic frameworks (MOFs) and conducting polymers, have also shown potential in gas sensing applications, which may be doped into graphene and MXene layers to improve the sensitivity of the sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478074PMC
http://dx.doi.org/10.3390/molecules29194558DOI Listing

Publication Analysis

Top Keywords

gas sensing
16
graphene mxene-based
8
mxene-based composites
8
composites gas
8
graphene mxenes
8
sensing applications
8
graphene
5
gas
5
sensing
5
comparative review
4

Similar Publications

CO- and HS-adsorbed one-dimensional AlSi structures for gas sensing applications.

R Soc Open Sci

January 2025

Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Thu Dau Mot, Binh Duong, Vietnam.

The potential applications of low-dimensional materials continue to inspire significant interest among researchers worldwide. This study investigates the properties of one-dimensional AlSi monolayers, specifically AlSi nanoribbons, and their adsorption behaviour with CO and HS molecules. The electronic, magnetic and optical properties of these systems are calculated using density functional theory and the Vienna Ab initio Simulation Package.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.

View Article and Find Full Text PDF

Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.

View Article and Find Full Text PDF

In order to study the pattern of changes in quality of marinated Chinese mitten crabs (Eriocheir sinensis) during cold storage, three aspects of sensory, taste and odor were investigated. Sensory evaluation and total volatile basic nitrogen (TVB-N) were measured in viscera and abdomen muscle at 0, 7, 15 and 30 days of storage at 4°C. Sensory scores significantly declined at 15 d, coinciding with TVB-N levels exceeding 25 mg N/100 g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!