Alcohol use disorder (AUD) is the most common substance use disorder and poses a significant global health challenge. Despite pharmacological advances, no single drug effectively treats all AUD patients. This study explores the protective potential of hispidol, a 6,4'-dihydroxyaurone, for AUD using the model system. Our findings demonstrate that hispidol-fed worms exhibited more pronounced impairments in thrashes, locomotory speed, and bending amplitude, indicating that hispidol exacerbated the detrimental effects of acute ethanol exposure. However, hispidol significantly improved ethanol withdrawal behaviors, such as locomotory speed and chemotaxis performance. These beneficial effects were absent in slo-1 worms (the ortholog of mammalian α-subunit of BK channel) but were restored with the (+) or (+) transgene, suggesting the involvement of BK channel activity. Additionally, hispidol increased fluorescence intensity and puncta in the motor neurons of slo-1::mCherry-tagged worms, indicating enhanced BK channel expression and clustering. Notably, hispidol did not alter internal ethanol concentrations, suggesting that its action is independent of ethanol metabolism. In the mouse models, hispidol treatment also demonstrated anxiolytic activity against ethanol withdrawal. Overall, these findings suggest hispidol as a promising candidate for targeting the BK channel in AUD treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478065 | PMC |
http://dx.doi.org/10.3390/molecules29194531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!