The focus of p calculations has primarily been on stable molecules, with limited studies comparing radical cations and stable cations. In this study, we comprehensively investigate models with implicit solvent and explicit water molecules, direct and indirect calculation approaches, as well as methods for calculating free energy, solvation energy, and quasi-harmonic oscillator approximation for para-substituted aniline radical cations (R-PhNH) and anilinium cations (R-PhNH) in the aqueous phase. Properly including and positioning explicit HO molecules in the models is important for reliable p predictions. For R-PhNH, precise p values were obtained using models with one or two explicit HO molecules, resulting in a root mean square error (RMSE) of 0.563 and 0.384, respectively, for both the CBS-QB3 and M062X(D3)/ma-def2QZVP methods. Further improvement was achieved by adding HO near oxygen-containing substituents, leading to the lowest RMSE of 0.310. Predicting p values for R-PhNH was more challenging. CBS-QB3 provided an RMSE of 0.349 and the M062X(D3)/ma-def2QZVP method failed to calculate p accurately (RMSE > 1). However, by adopting the double-hybrid functional method and adding HO near the R substituent group, the calculations were significantly improved with an average absolute difference (Δp) of 0.357 between the calculated and experimental p values. Our study offers efficient and reliable methods for p calculations of R-PhNH (especially) and R-PhNH based on currently mature quantum chemistry software.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477995PMC
http://dx.doi.org/10.3390/molecules29194522DOI Listing

Publication Analysis

Top Keywords

radical cations
12
predicting values
8
para-substituted aniline
8
aniline radical
8
cations stable
8
cations r-phnh
8
explicit molecules
8
r-phnh
6
cations
5
values para-substituted
4

Similar Publications

Wellbore instability caused by hydration during the development of shale gas reservoirs poses significant challenges to drilling engineering. In this study, a novel and environmentally friendly shale inhibitor, TIL-NH, was synthesized via free radical polymerization using 1-vinylimidazole and N-(2-bromoethyl)-1,3-propanediamine dihydrobromide as the main raw materials. The molecular structure of TIL-NH was characterized by infrared spectroscopy and nuclear magnetic resonance.

View Article and Find Full Text PDF

A Comparison of the Electronic Properties of Selected Antioxidants Vitamin C, Uric Acid, NAC and Melatonin with Guanosine Derivatives: A Theoretical Study.

Molecules

December 2024

DNA Damage Laboratory of the Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.

Each cell in the human body is continually exposed to harmful external and internal factors. During evolution, cells have developed various defence systems, divided into enzymatic and non-enzymatic types, to which low-weight molecule antioxidants belong. In this article, the ionisation potential and electron affinity, as well as global reactivity descriptors of Vitamin C, Melatonin, Uric Acids, and N-acetyl-L-cysteine, were theoretically investigated at the MP-2/aug-cc-pVTZ level of theory in the condensed (aqueous) phase.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

We report the synthesis of three radical-cation salts of BEDT-TTF from racemic tris(oxalato)ferrate by electrocrystallization in the presence of chiral molecules. In the presence of enantiopure l-(+)-tartaric acid, we observe spontaneous resolution of the labile tris(oxalato)ferrate anion to produce the chiral radical-cation salt α-(BEDT-TTF)[Δ-Fe(CO)].[l-(+)-tartaric acid] which contains only the Δ enantiomer of Fe(CO).

View Article and Find Full Text PDF

The catalytic indirect reductive quenching method is facilitated by a combination of Ir(III) photoredox and sulfide dual-catalysis system. This study demonstrated a method for synthesizing multi-substituted furans by using a photoredox/sulfide dual-catalysis system. This method enables the synthesis of various furan derivatives, including spirofurans and phthalans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!