Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Gastric cancer is one of the most common malignant tumors worldwide, with high incidence and mortality rates, and it has a complex etiology and complex pathological features. Depending on the tumor type, gastric cancer can be classified as intestinal-type and diffuse-type gastric cancer, each with distinct pathogenic mechanisms and clinical presentations. In recent years, machine learning techniques have been widely applied in the medical field, offering new perspectives for the diagnosis, treatment, and prognosis of gastric cancer patients.
Methods: This study recruited 2158 gastric cancer patients and constructed prognostic prediction models for both intestinal-type and diffuse-type gastric cancer. Clinical pathological data were collected from patients, and machine learning algorithms were used for feature selection and model construction. The performance of the models was validated with training and testing datasets. The Shapley additive explanations (SHAP) values were used to interpret the model predictions and identify the main factors that influence patient survival.
Results: In the prognostic model for intestinal-type gastric cancer, the gradient boosting decision tree (GBDT) model demonstrated the best performance, with key features including pTNM, CA125, tumor size, CA199, and PALB. Similarly, in the prognostic model for diffuse-type gastric cancer, the GBDT model was utilized, with key features comprising pTNM, Borrmann type IV disease, lymphocyte (LYM), lactate dehydrogenase (LDH), potassium (K), perineural invasion (PNI), tumor size, and whole stomach location. Risk stratification analysis revealed that the prognosis of high-risk patients was significantly worse than that of low-risk patients.
Conclusion: Machine learning shows great potential in predicting survival outcomes of gastric cancer patients, providing strong support for the development of personalized treatment plans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481450 | PMC |
http://dx.doi.org/10.1186/s12957-024-03550-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!