Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study explored, for the first time the role of different designs of the Flow-Through-Cell (FTC, USP IV) dissolution Tester in predicting the in-vivo performance of Pentoxifylline (PTX) sustained-release (SR) market product, under fed & fasting conditions. Release studies of Trental SR 400 mg (Sanofi, Egypt), were carried-out in the FTC under different conditions, including: different volumes / compositions of release media, variable FTC flow patterns as well as applying open / closed loop configuration setups. Pharmacokinetic (PK) data, obtained from literature, were converted to in-vivo fraction-absorbed [F] using Wagner-Nelson (WN) method. A 1:1 IVIVC was investigated by comparing PTX fraction-dissolved [F] under different FTC release designs versus calculated [F]. Predicted PK parameters were evaluated, and compared with actual data, with estimation of prediction-error (PE%). The suggested FTC design; a closed-loop setup, with turbulent-flow pattern of the dissolution medium; provided the most acceptable PTX release according to USP labeled limits (USP 27). Also, results showed that PTX release was pronouncedly increased in a finite-volume of gradient-buffer system rather than water, which guarantee complete resemblance to GIT environment. This release design presented the most predictive IVIVC model with PTX in-vivo performance under fasting / fed states, with acceptable PE% values in terms of C and AUCs. A suggested FTC design is proposed as an alternative dissolution model in the official USP-monograph for PTX SR products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-024-02956-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!