Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrafast fiber lasers constitute a flexible platform to investigate new solitary wave concepts. To surpass the low energy limitation of the conventional solitons generated in standard telecom fibers, successive breakthroughs have promoted the usage of an important frequency chirping within fiber oscillators. This lead to original solitary wave regimes such as stretched-pulse, all-normal-dispersion, and self-similar dynamics. We here revisit ultrafast fiber lasers built from standard optical fibers featuring solely anomalous dispersion. We propose a new cavity design enhancing key dissipative effects with contained frequency chirping and demonstrate the generation of high energy pulses in the few-picoseconds regime. The involved intracavity dynamics blends conventional and dissipative soliton features in an unseen way with low- and high-energy propagation regions, allowing an increased flexibility and novel scalability prospects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480505 | PMC |
http://dx.doi.org/10.1038/s41467-024-52954-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!