Generation and Selection of Phage Display Antibody Libraries in Fab Format.

Cold Spring Harb Protoc

Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, USA

Published: October 2024

Monoclonal antibodies (mAbs) have exceptional utility as research reagents and pharmaceuticals. As a complement to both traditional and contemporary single-B-cell cloning technologies, the mining of antibody libraries via display technologies-which mimic and simplify B cells by physically linking phenotype (protein) to genotype (protein-encoding DNA or RNA)-has become an important method for mAb discovery. Among these display technologies, phage display has been particularly successful for the generation of mAbs that bind to a wide variety of antigens with exceptional specificities and affinities. Rather than multivalent whole antibodies, phage display typically uses monovalent antibody fragments, such as "fragment antigen binding" (Fab), as the format of choice. The ∼50-kDa Fab format consists of four immunoglobulin (Ig) domains on two polypeptide chains (light chain and shortened heavy chain), and exhibits its antigen binding site in a natural configuration found in bivalent IgG and other multivalent Ig molecules. The Fab fragment has a high melting temperature and a low tendency to aggregate, and can be readily converted to natural and nonnatural Ig formats without affecting antigen binding properties, which has made it a favored format for phage display for more than three decades. Here, I briefly summarize some of the approaches used for the generation and selection of phage display antibody libraries in Fab format, from human and nonhuman antibody repertoires.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.top107764DOI Listing

Publication Analysis

Top Keywords

phage display
20
fab format
16
antibody libraries
12
generation selection
8
selection phage
8
display antibody
8
libraries fab
8
antigen binding
8
display
7
phage
5

Similar Publications

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors.

ACS Appl Mater Interfaces

December 2024

Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.

Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.

View Article and Find Full Text PDF

Biologically produced protein drugs are generally susceptible to degradation by proteases and often exhibit immunogenicity. To address this issue, mirror-image peptide/protein binders consisting of D-amino acids have been developed so far through the mirror-image phage display technique. Here, we develop a mirror-image protein binder derived from a monobody, one of the promising protein scaffolds, utilizing two notable technologies: chemical protein synthesis and TRAP display, an improved version of mRNA display.

View Article and Find Full Text PDF

Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!