The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior.

eNeuro

Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

Published: October 2024

Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of , which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c- and expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521796PMC
http://dx.doi.org/10.1523/ENEURO.0141-24.2024DOI Listing

Publication Analysis

Top Keywords

orienting behavior
20
social behavior
16
behavior
9
zebrafish cerebellar
8
cerebellar neural
8
neural circuits
8
play role
8
role social
8
cerebellar circuits
8
pcs zebrafish
8

Similar Publications

Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.

View Article and Find Full Text PDF

Lattice thermal conductivity and phonon properties of polycrystalline graphene.

Nanoscale Adv

December 2024

Department of Mechanical Engineering, IIT Bombay Mumbai Maharashtra India 400076

Using the spectral energy density method, we predict the phonon scattering mean lifetimes of polycrystalline graphene (PC-G) having polycrystallinity only along the -axis with seven different misorientation (tilt) angles at room temperature. Contrary to other studies on PC-G samples, our results indicate a strong dependence of the thermal conductivity (TC) on the tilt angles which we attribute to careful preparation of our grain boundaries-based samples without introducing any local strains and ensuring periodic boundary conditions for the supercells along the and axes. We also show that the square of the group velocity components along and axes and the phonon lifetimes are uncorrelated and the phonon density of states are almost the same for all samples with different tilt angles.

View Article and Find Full Text PDF

In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.

View Article and Find Full Text PDF

Objective: Depressive symptoms are prevalent among parents of children with cancer, significantly impacting their well-being. Problem-solving skills, strongly linked to depressive symptoms, offer a promising avenue for intervention. This study aimed to identify latent profiles of parental problem-solving skills and evaluate differences in depressive symptoms across these profiles.

View Article and Find Full Text PDF

Biological modelling helps understanding complex processes, like energy metabolism, by predicting pathway compensations and equilibrium under given conditions. When deciphering metabolic adaptations, traditional experiments face challenges due to numerous enzymatic activities, needing modelling to anticipate pathway behaviours and orientate research. This paper aims to implement a constraint-based modelling method of muscular energy metabolism, adaptable to individual situations, energy demands, and complex disease-specific metabolic alterations like muscular dystrophy calpainopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!