Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionkg2jv2uh7kmbf07dia3b1cgtj0oollft): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Chitosan, a sustainable and highly abundant animal-derived biopolymer, possesses versatile properties, such as solubility, film-forming ability, viscosity, ion binding, and antimicrobial qualities, which are suitable for biomedical applications. Due to its charged nature, chitosan is a lucrative biopolymer for scaffold fabrication, especially for bone-tissue engineering applications, using the electrospinning method, which is an industrially suitable, scalable, and swift method for fabricating porous nanocomposite structures. Despite a lot of research being conducted on chitosan-based electrospun materials for bone tissue engineering, the research on this topic has not been thoroughly reviewed. This review article aims to fill this knowledge gap and provides an in-depth discussion of the research on this topic. To start with, a brief overview of bone tissue engineering has been provided, followed by the properties of chitosan, which make it an important biopolymer for this application. Also, the important factors that must be considered while electrospinning chitosan, especially considering its application in bone tissue engineering, have been debated. Further, the type of chitosan-based electrospun material has been discussed along with the recent advancements in this research area. Finally, a brief perspective on the future of this technology has been provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136530 | DOI Listing |
Int J Mol Sci
November 2024
Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania.
This study investigates the impact of chitosan-based nanofibers on burn wound healing in a rat model. Two formulations of chitosan nanofibers were prepared through electrospinning. The formulations were then incorporated with different amounts of norfloxacin and underwent surface modifications with 2-formylphenylboronic acid.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
Wound healing is a dynamic physiological process essential for regenerating skin and maintaining coherence in hypodermic tissues. Chitosan-based electrospun nanofibre wound dressings show great promise for expediting the integration of skin and tissues due to their nano-topographic, biodegradable, biocompatible, and antimicrobial properties. However, their moderate bactericidal efficacy and limited mechanical strength hinder their widespread clinical application.
View Article and Find Full Text PDFRSC Adv
October 2024
Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
Electrospun nanofibers made from chitosan are promising materials for surgical wound dressings due to their non-toxicity and biocompatibility. However, the antibacterial activity of chitosan is limited by its poor water solubility under physiological conditions. This study addresses this issue by producing electrospun nanofibers mainly from natural compounds, including chitosan and quaternized chitosan, which enhance both its solubility for electrospinning and the antibacterial activity of the resulting electrospun nanofibers.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye. Electronic address:
Chitosan-based nanofibers with excellent properties are attractive materials for specific industrial applications of contemporary interest. This work aims to fabricate functional nanofibers based on poly(vinyl alcohol)/chitosan (CS) with an antioxidant and model drug molecule, gallic acid (GA), by electrospinning, followed by cross-linking through glutaraldehyde (PVA-CS-GAs). PVA-CS-GAs were electrospun at two different concentrations by the adjustment of the CS feeding ratio.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!