A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuropathology in an α-synuclein preformed fibril mouse model occurs independent of the Parkinson's disease-linked lysosomal ATP13A2 protein. | LitMetric

Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear. Cellular studies report that ATP13A2 can regulate α-synuclein (α-syn) secretion via exosomes. However, the relationship between ATP13A2 and α-syn in animal models remains inconclusive. ATP13A2 knockout (KO) mice exhibit lysosomal abnormalities and reactive astrogliosis but do not develop PD-related neuropathology. Studies manipulating α-syn levels in mice lacking ATP13A2 indicate minimal effects on pathology. The delivery of α-syn preformed fibrils (PFFs) into the mouse striatum is a well-defined model to study the development and spread of α-syn pathology. In this study we unilaterally injected wild-type (WT) and homozygous ATP13A2 KO mice with mouse α-syn PFFs in the striatum and evaluated mice for neuropathology after 6 months. The distribution, spread and extent of α-syn aggregation in multiple regions of the mouse brain was largely independent of ATP13A2 expression. The loss of nigrostriatal pathway dopaminergic neurons and their nerve terminals induced by PFFs were equivalent in WT and ATP13A2 KO mice. Reactive astrogliosis was induced equivalently by α-syn PFFs in WT and KO mice but was already significantly higher in ATP13A2 KO mice due to pre-existing reactive gliosis. We did not identify asymmetric motor disturbances, microglial activation, or axonal damage induced by α-syn PFFs in WT or KO mice. Although α-syn PFFs induce an increase in lysosomal number in the SNc in general, TH-positive dopaminergic neurons did not exhibit either increased lysosomal area or intensity, regardless of genotype. Our study evaluating the spread of α-syn pathology reveals no exacerbation of α-syn pathology, neuronal loss, astrogliosis or motor deficits in ATP13A2 KO mice, suggesting that selective lysosomal abnormalities resulting from ATP13A2 loss do not play a major role in α-syn clearance or propagation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2024.106701DOI Listing

Publication Analysis

Top Keywords

atp13a2 mice
16
α-syn pffs
16
atp13a2
13
α-syn
13
α-syn pathology
12
mice
9
lysosomal abnormalities
8
reactive astrogliosis
8
spread α-syn
8
dopaminergic neurons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!