Discovery of a Potent, selective and orally bioavailable CDK9 degrader for targeting transcription regulation in Triple-Negative breast cancer.

Bioorg Chem

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • * Researchers developed a novel class of compounds called PROTACs, specifically targeting CDK9 for degradation, which showed strong effectiveness in laboratory tests against TNBC cells.
  • * One of these compounds, referred to as compound 29, demonstrated high potency in degrading CDK9, favorable oral bioavailability in mice, and the ability to inhibit tumor growth in TNBC models, suggesting its potential as a future treatment option.

Article Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive, heterogeneous and invasive subtype of breast cancer with very limited effective modalities of treatment. Degrading the critical transcription regulator cyclin-dependent kinase 9 (CDK9) by proteolysis targeting chimeras (PROTACs) has shown promising potential for treating TNBC. However, to date, CDK9-targeting PROTACs for oral administration in treatment of cancers have not been reported. We herein present the design, synthesis, and extensive biological evaluation of a series of novel PROTACs as orally bioavailable, potent and selective degraders of CDK9 for targeting transcription regulation in triple-negative breast cancer. The developed compound 29 exhibited a desired potency (DC = 3.94 nM) with high efficacy (D = 96 %) on CDK9 degradation, and effectively inhibited the proliferation of TNBC MDA-MB-231 cells. Mechanistic investigations revealed that compound 29 is a bona fide CDK9 degrader and can substantially downregulate the downstream targets c-Myc and MCL-1. Furthermore, compound 29 displayed favorable oral bioavailability in mice, and oral administration of degrader 29 significantly depleted CDK9 protein in TNBC tumor tissues and exhibited tumor growth inhibition in TNBC xenograft mice models. Collectively, our work established that degrader 29 is a highly potent and selective degraders of CDK9 with satisfactory oral bioavailability, which holds promising potential for the treatment of TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107876DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
potent selective
12
triple-negative breast
12
orally bioavailable
8
cdk9 degrader
8
targeting transcription
8
transcription regulation
8
regulation triple-negative
8
promising potential
8
oral administration
8

Similar Publications

Study Objectives: Cancer-related fatigue is one of the most common symptoms in cancer survivors. Cognitive behavioural therapy for insomnia (CBT-I) can improve fatigue, but mechanisms are unclear. This secondary analysis of a randomized controlled trial evaluated whether CBT-I led to a significant improvement in fatigue, accounting for change in comorbid symptoms of insomnia, perceived cognitive impairment (PCI), anxiety, and depression.

View Article and Find Full Text PDF

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Purpose Of Review: Male breast cancer (MBC) is a rare entity which often arises in elderly people. Aim of this review is to evaluate the principal issues related to MBC in elderly, because the therapeutic management of disease is not only related to the biological behavior of the tumor, but also to the comorbidities and frailty of older population. A scoping literature review was performed on Pubmed and Cochrane Database using the following keywords: therapeutic management/ male/ breast cancer/ elderly patients.

View Article and Find Full Text PDF

Efficacy and safety of KN026 and docetaxel for HER2-positive breast cancer: a phase II clinical trial.

Cancer Commun (Lond)

January 2025

Department of Medical Oncology, Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, P. R. China.

Background: The standard first-line treatment for human epidermal growth factor receptor 2 (HER2)-positive recurrent/metastatic breast cancer currently includes pertuzumab plus trastuzumab and docetaxel. This study aimed to evaluate the effectiveness of KN026, an anti-HER2 bispecific antibody, plus docetaxel in first-line treatment of HER2-positive recurrent/metastatic breast cancer.

Methods: This open-label, single-arm, phase II study enrolled patients with HER2-positive recurrent/metastatic breast cancer in 19 centers across China from December 30, 2019 to May 27, 2021.

View Article and Find Full Text PDF

Background: Population-level mammography screening for early detection of breast cancer is a secondary prevention measure well-embedded in developed countries, and the implications for women's health are widely researched. From a public health perspective, efforts have focused on why mammography screening rates remain below the 70% screening rate required for effective population-level screening. From a sociological perspective, debates centre on whether 'informed choice' regarding screening exists for all women and the overemphasis on screening benefits, at the cost of not highlighting the potential harms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!