A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis of plant-derived triterpenoid asiatic acid in Saccharomyces cerevisiae cell factories. | LitMetric

Biosynthesis of plant-derived triterpenoid asiatic acid in Saccharomyces cerevisiae cell factories.

Bioorg Chem

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Published: December 2024

Asiatic acid, a bioactive component of Centella asiatica (L.) Urban, exhibits plentiful valuable pharmacological properties. Herein, we engineered Saccharomyces cerevisiae to produce asiatic acid. Initially, asiatic acid was synthesized by expressing the Centella asiatica cytochrome P450 monooxygenases CYP714E19 and CYP716C11 in a Saccharomyces cerevisiae strain optimized for ursolic acid production. The engineered strain yielded 0.42 ± 0.01 mg/L and 0.067 ± 0.0013 mg/g dry cell weight (DCW) of asiatic acid. Subsequently, a suitable cytochrome P450 reductase was screened, and key enzymes were overexpressed to effectively convert ursolic acid to asiatic acid. Strengthening heme biosynthesis, promoting endoplasmic reticulum (ER) expansion, and enhancing the cofactor supply were implemented to improve P450 catalytic activity. Additionally, a PDZ-PDZlig-mediated protein self-assembly strategy was used to improve the efficiency of the CYP714E19 and CYP716C11 catalytic cascade. Finally, the highest production was achieved (30.09 ± 0.15 mg/L, 4.09 ± 0.01 mg/g DCW) in microbial cell factories. This work establishes a foundation for efficient production of asiatic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107861DOI Listing

Publication Analysis

Top Keywords

asiatic acid
28
saccharomyces cerevisiae
12
acid
9
cell factories
8
centella asiatica
8
cytochrome p450
8
cyp714e19 cyp716c11
8
ursolic acid
8
asiatic
7
biosynthesis plant-derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!