Adenosine triphosphate (ATP) is a major chemical energy carrier in organisms and is involved in numerous biological processes. ATP levels are associated with many diseases, cell viability, and food freshness. Thus, it has become an important biomarker. Many strategies have been used to detect ATP. However, the problems of difficult-to-prepare materials, too much dependence on instruments, and complicated processes restrict the application of these methods. In this study, we proposed a novel ATP detection sensor. The method is based on the fluorescence enhancement effect of dimeric G-quadruplex (Di-G4) on thioflavin T (ThT). First, the cleavage of Di-G4 by S1 nuclease decreases system fluorescence. However, it can be recovered by increases in ATP concentrations, which act as an inhibitor of S1 nuclease. Under the optimized conditions, a good linear relationship was observed between fluorescence intensity and ATP concentrations within the range of 0.5-120 µM. The detection limit was 245 nM. The method was utilized to measure the ATP content in apples and compared with ATP assay kits, resulting in satisfactory results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!